Back in Time Petri Nets

  • Thomas Chatain
  • Claude Jard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)


The time progress assumption is at the core of the semantics of real-time formalisms. It is also the major obstacle to the development of partial-order techniques for real-time distributed systems since the events are ordered both by causality and by their occurrence in time. Anyway, extended free choice safe time Petri nets (TPNs) were already identified as a class where partial order semantics behaves well. We show that, for this class, the time progress assumption can even be dropped (time may go back in case of concurrency), which establishes a nice relation between partial-order semantics and time progress assumption.


Free Choice Discrete Action Classical Semantic Standard Semantic Input Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theoretical Computer Science 243(1-2), 409–447 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Benveniste, A., Fabre, E., Haar, S.: Markov nets: probabilistic models for distributed and concurrent systems. IEEE Trans. Automat. Contr. 48(11), 1936–1950 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Best, E.: Structure theory of Petri nets: the free choice hiatus. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986, Part 1. LNCS, vol. 254, pp. 168–205. Springer, Heidelberg (1987)Google Scholar
  4. 4.
    Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Boyer, M., Roux, O.H.: Comparison of the expressiveness of arc, place and transition time petri nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 63–82. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chatain, T.: Dépliages symboliques de réseaux de Petri de haut niveau et application à la supervision des systèmes répartis. Thèse de doctorat, Université Rennes 1, Rennes, France (November 2006)Google Scholar
  7. 7.
    Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 125–145. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Desel, J., Esparza, J.: Free Choice Petri nets. Cambridge University Press (1995)Google Scholar
  9. 9.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Merlin, P.M., Farber, D.J.: Recoverability of communication protocols – implications of a theorical study. IEEE Transactions on Communications 24 (1976)Google Scholar
  11. 11.
    Niebert, P., Qu, H.: Adding invariants to event zone automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 290–305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Reynier, P.-A., Sangnier, A.: Weak time Petri nets strike back! In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 557–571. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Chatain
    • 1
  • Claude Jard
    • 2
  1. 1.INRIA, CNRSLSV, ENS CachanFrance
  2. 2.LINAUniversité de NantesFrance

Personalised recommendations