Skip to main content

Transience Bounds for Distributed Algorithms

  • Conference paper
Book cover Formal Modeling and Analysis of Timed Systems (FORMATS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8053))

Abstract

A large variety of distributed systems, like some classical synchronizers, routers, or schedulers, have been shown to have a periodic behavior after an initial transient phase (Malka and Rajsbaum, WDAG 1991). In fact, each of these systems satisfies recurrence relations that turn out to be linear as soon as we consider max-plus or min-plus algebra. In this paper, we give a new proof that such systems are eventually periodic and a new upper bound on the length of the initial transient phase. Interestingly, this is the first asymptotically tight bound that is linear in the system size for various classes of systems. Another significant benefit of our approach lies in the straightforwardness of arguments: The proof is based on an easy convolution lemma borrowed from Nachtigall (Math. Method. Oper. Res. 46) instead of purely graph-theoretic arguments and involved path reductions found in all previous proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akian, M., Gaubert, S., Walsh, C.: Discrete Max-Plus Spectral Theory. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics, pp. 53–78. AMS, Providence (2005)

    Chapter  Google Scholar 

  2. Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Directory Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 405–419. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Awerbuch, B.: Complexity of Network Synchronization. J. ACM 32, 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbosa, V.C., Gafni, E.: Concurrency in Heavily Loaded Neighborhood-Constrained Systems. ACM T. Progr. Lang. Sys. 11, 562–584 (1989)

    Article  Google Scholar 

  5. Bouillard, A., Gaujal, B.: Coupling Time of a (max,plus) Matrix. In: Workshop on Max-Plus Algebra at the 1st IFAC Symposium on System Structure and Control. Elsevier, Amsterdam (2001)

    Google Scholar 

  6. Busch, C., Tirthapura, S.: Analysis of Link Reversal Routing Algorithms. SIAM J. Comput. 35, 305–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandy, K.M., Misra, J.: The Drinking Philosophers Problem. ACM T. Progr. Lang. Sys. 6, 632–646 (1984)

    Article  Google Scholar 

  8. Charron-Bost, B., Függer, M., Nowak, T.: New Transience Bounds for Long Walks (2012) arXiv:1209.3342 [cs.DM]

    Google Scholar 

  9. Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Full Reversal Routing as a Linear Dynamical System. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 101–112. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Partial is Full. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 113–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Cohen, G., Dubois, D., Quadrat, J.-P., Viot, M.: Analyse du comportement périodique de systèmes de production par la théorie des dioïdes. INRIA Research Report 191 (1983)

    Google Scholar 

  12. Dubois, D., Stecke, K.E.: Dynamic Analysis of Repetitive Decision-Free Discrete Event Processes: The Algebra of Timed Marked Graphs and Algorithmic Issues. Ann. Oper. Res. 26, 151–193 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Even, S., Rajsbaum, S.: The Use of a Synchronizer Yields Maximum Computation Rate in Distributed Systems. Theor. Comput. Syst. 30, 447–474 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Gafni, E.M., Bertsekas, D.P.: Asymptotic Optimality of Shortest Path Routing Algorithms. IEEE T. Inform. Theory. 33, 83–90 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  16. Malka, Y., Rajsbaum, S.: Analysis of Distributed Algorithms Based on Recurrence Relations. In: Toueg, S., Spirakis, P.G., Kirousis, L. (eds.) WDAG 1991. LNCS, vol. 579, pp. 242–253. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  17. Hartmann, M., Arguelles, C.: Transience Bounds for Long Walks. Math. Oper. Res. 24, 414–439 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nachtigall, K.: Powers of Matrices over an Extremal Algebra with Applications to Periodic Graphs. Math. Method. Oper. Res. 46, 87–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, H., Schneider, M.H.: Max-Balancing Weighted Directed Graphs and Matrix Scaling. Math. Oper. Res. 16, 208–222 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soto y Koelemeijer, G.: On the Behaviour of Classes of Min-Max-Plus Systems. PhD Thesis, TU Delft (2003)

    Google Scholar 

  21. Tirthapura, S., Herlihy, M.: Self-Stabilizing Distributed Queuing. IEEE T. Parall. Distr. 17, 646–655 (2006)

    Article  Google Scholar 

  22. Welch, J.L., Walter, J.E.: Link Reversal Algorithms. Morgan & Claypool, San Rafael (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charron-Bost, B., Függer, M., Nowak, T. (2013). Transience Bounds for Distributed Algorithms. In: Braberman, V., Fribourg, L. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2013. Lecture Notes in Computer Science, vol 8053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40229-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40229-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40228-9

  • Online ISBN: 978-3-642-40229-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics