Skip to main content

A Nanophotonic Computing Paradigm: Problem-Solving and Decision-Making Systems Using Spatiotemporal Photoexcitation Transfer Dynamics

  • Chapter
  • First Online:
Nanophotonic Information Physics

Abstract

In contrast to conventional digital computers that operate as instructed by programmers, biological organisms solve problems and make decisions through intrinsic spatiotemporal dynamics in which their dynamic components process environmental information in a self-organized manner. Previously, we formulated two mathematical models of spatiotemporal dynamics by which the single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, could solve a problem and make a decision by changing its amorphous shape in dynamic and uncertain environments. These models can also be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba’s shape-changing capability. Here we demonstrate that the photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions mimic the amoeba-like spatiotemporal dynamics and can be used to solve two highly complex problems; the satisfiability problem, which is one of the most difficult combinatorial optimization problems, to determine whether a given logical proposition is self-consistent, and the multi-armed bandit problem, which is a decision-making problem in finding the most profitable option from among a number of options that provide rewards with different unknown probabilities. Our problem-solving and decision-making models exhibited better performances than conventionally known best algorithms. These demonstrations pave the way for a novel nanophotonic computing paradigm in which both coherent and dissipative processes are exploited for performing powerful solution searching and efficient decision-making with low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Conrad, Commun. ACM 28, 464–480 (1985)

    Article  Google Scholar 

  2. M. Dorigo, V. Maniezzo, A. Colorni, IEEE Trans. Syst. Man Cybernet. B 26, 29–41 (1996)

    Article  Google Scholar 

  3. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  4. G. Rozenberg, T. Back, J. Kok (eds.), Handbook of Natural Computing (Springer, Netherlands, 2012)

    Google Scholar 

  5. T. Nakagaki, H. Yamada, A. Toth, Nature 407, 470 (2000)

    Article  ADS  Google Scholar 

  6. A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M.D. Fricker, K. Yumiki, R. Kobayashi, T. Nakagaki, Science 327(5964), 439–442 (2010)

    Google Scholar 

  7. M. Aono, Y.-P. Gunji, BioSystems 71, 257–287 (2003)

    Article  Google Scholar 

  8. M. Aono, Hara, K. Aihara, Commun. ACM 50(9), 69–72 (2007)

    Google Scholar 

  9. M. Aono, Y. Hirata, M. Hara, K. Aihara, New Generat Comput 27, 129–157 (2009)

    Article  MATH  Google Scholar 

  10. A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, I. Endo, Phys. Rev. Lett. 87(7), 078102 (2001)

    Article  ADS  Google Scholar 

  11. S. Takagi, T. Ueda, Physica D 237, 420–427 (2008)

    Article  ADS  Google Scholar 

  12. M. Aono, S.-J. Kim, L. Zhu, M. Wakabayashi, M. Hara, Submitted (2013)

    Google Scholar 

  13. M. Aono, S.-J. Kim, L. Zhu, M. Naruse, M. Ohtsu, H. Hori, M. Hara, in Proceedings of 2012 International Conference on Nonlinear Theory and its Applications, Majorca, 22–26 October 2012, pp. 586–589

    Google Scholar 

  14. S.-J. Kim, M. Aono, Hara. BioSystems 101, 29–36 (2010)

    Google Scholar 

  15. S.-J. Kim, E. Nameda, M. Aono, M. Hara, in Proceedings of 2011 International Conference on Nonlinear Theory and its Applications, Kobe, 4–7 September 2011, pp. 176–179

    Google Scholar 

  16. S.-J. Kim, M. Aono, E. Nameda, M. Hara, Technical Report of IEICE (CCS-2011-025) [in Japanese], 2011, pp. 36–41

    Google Scholar 

  17. S.-J. Kim, M. Aono, E. Nameda, M. Hara, in Proceedings of 2012 International Conference on Nonlinear Theory and its Applications, Majorca, 22–26 October 2012, pp. 590–593

    Google Scholar 

  18. M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, M. Ohtsu, IEICE Trans. Electron. E88-C, 1817–1823 (2005)

    Google Scholar 

  19. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M.M. Hara, Ohtsu. Phys. Rev. B 86, 125407 (2012)

    Article  ADS  Google Scholar 

  20. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, M. Hara, Langmuir 29, 7557–7564 (2013)

    Google Scholar 

  21. S.-J. Kim, M. Naruse, M. Aono, M. Ohtsu, M. Hara, Sci. Rep. 3, 2370 (2013). doi:10.1038/srep02370

  22. M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quant. Electron 14, 1404–1417 (2009)

    Article  Google Scholar 

  23. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243–246 (2006)

    Google Scholar 

  24. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.J. An, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 90(223110), 1–3 (2007)

    Google Scholar 

  25. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 100, 181–187 (2010)

    Article  ADS  Google Scholar 

  26. T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, M. Naruse, Appl. Phys. B 103, 537–546 (2011)

    Google Scholar 

  27. K. Akahane, N. Yamamoto, M. Tsuchiya, Appl. Phys. Lett. 93, 041121 (2008)

    Article  ADS  Google Scholar 

  28. C. Pistol, C. Dwyer, A.R. Lebeck, IEEE Micro. 28, 7–18 (2008)

    Article  Google Scholar 

  29. M. Naruse, H. Hori, K. Kobayashi, P. Holmström, L. Thylén, M. Ohtsu, Opt. Express 18, A544–A553 (2010)

    Article  Google Scholar 

  30. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse, M., Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008)

    Book  Google Scholar 

  31. T. Itoh, M. Furumiya, T. Ikehara, C. Gourdon, Solid State Commun. 73, 2710–274 (1990)

    Google Scholar 

  32. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman and co., New York, 1979)

    MATH  Google Scholar 

  33. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  34. U. Schöning, in Proceedings of 40th Symposium on Foundations of Computer Science, 1999, pp. 410–414

    Google Scholar 

  35. K. Iwama, S. Tamaki, in Proceedings 15th Symposium on Discrete Algorithms, 2004, p. 328

    Google Scholar 

  36. http://www.cs.ubc.ca/ hoos/SATLIB/benchm.html

  37. S. Kirkpatrick, B. Selman, Science 264, 1297–1301 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Nature 400, 133–137 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  39. H. Robbins, Bull. Amer. Math. Soc. 58, 527–536 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Thompson, Biometrika 25, 285–294 (1933)

    MATH  Google Scholar 

  41. J. Gittins, D. Jones, A dynamic allocation index for the sequential design of experiments, in Progress in Statistics, ed. by J. Gans (North Holland, Amsterdam, 1974) pp. 241–266

    Google Scholar 

  42. J. Gittins, J.R. Stat, Soc. B 41, 148–177 (1979)

    MATH  Google Scholar 

  43. R. Agrawal, Adv. Appl. Prob. 27, 1054–1078 (1995)

    Article  MATH  Google Scholar 

  44. P. Auer, N. Cesa-Bianchi, P. Fischer, Mach. Learn. 47, 235–256 (2002)

    Article  MATH  Google Scholar 

  45. L. Kocsis, C. Szepesvári, in ECML2006, Lecture notes in artificial intelligence, vol. 4212 (Springer, Berlin, 2006), pp. 282–293

    Google Scholar 

  46. S. Gelly, Y. Wang, R. Munos, O. Teytaud, O. RR-6062-INRIA, pp. 1–19 (2006)

    Google Scholar 

  47. N. Daw, J. O’Doherty, P. Dayan, B. Seymour, R. Dolan, Nature 441, 876–879 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masashi Aono or Song-Ju Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aono, M. et al. (2014). A Nanophotonic Computing Paradigm: Problem-Solving and Decision-Making Systems Using Spatiotemporal Photoexcitation Transfer Dynamics . In: Naruse, M. (eds) Nanophotonic Information Physics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40224-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40224-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40223-4

  • Online ISBN: 978-3-642-40224-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics