Advertisement

Engineering of a Nanometric Optical System Based on Optical Near-Field Interactions for Macro-Scale Applications

  • Naoya TateEmail author
  • Makoto Naruse
  • Motoichi Ohtsu
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

The operating principle of our nanometric optical system is based on its hierarchical structure. This hierarchy is due to the characteristic behavior of optical near-fields induced by nanometric interactions between light and materials. In order to exploit such nanometric phenomena in macro-scale applications, it is essential to design and engineer each component of the system so that the optical near-field behavior can be extracted as macro-scale optical responses. Here we introduce the basic concept of our nanometric optical system, and we describe some demonstrations of macro-scale applications whose operation is based on this concept.

Keywords

Coupling Strength Lower Excited State Nanophotonic Device Stretch Length Exciton Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks the members of Ohtsu Research Group at the University of Tokyo, and Dr. M. Hoga, Mr. Y. Ohyagi, Ms. Y. Sekine, and Dr. H. Fujita in Dai Nippon Printing Co. Ltd. for their valuable contributions. Part of this work was supported by the Research and Development Program for Innovative Energy Efficiency Technology funded by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References

  1. 1.
    H.H. Hoplins, Proc. Roy. Soc. A217, 408 (1953)ADSCrossRefGoogle Scholar
  2. 2.
    M. Ohtsu, Nanophotonics 1, 83 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, Opt. Exp. 13, 9265 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M. Han, X. Gao, J.Z. Su, S. Nie, Nature Biotech. 19, 631 (2001)CrossRefGoogle Scholar
  5. 5.
    S.A. Crooker, J.A. Hollingsworth, S. Tretiak, V.I. Klimov, Phys. Rev. Lett. 89, 186802 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Strassburg, M. Dworzak, H. Born, R. Heitz, A. Hoffmann, M. Bartels, K. Lischka, D. Schikora, J. Christen, Appl. Phys. Lett. 80, 473 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.-J. An, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007)Google Scholar
  9. 9.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophotonics 1, 011591 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Kawazoe, S. Tanaka, M. Ohtsu, J. Nanophotonics 2, 029502 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Naruse, H. Hori, K. Kobayashi, T. Kawazoe, M. Ohtsu, Appl. Phys. B 102, 717 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, M. Naruse, Appl. Phys. B 103, 537 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H. Yonemitsu, T. Kawazoe, K. Kobayashi, M. Ohtsu, J. Photolumin. 122, 230 (2007)Google Scholar
  14. 14.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    W. Nomura, T. Yatsui, Y. Yanase, K. Suzuki, M. Fujita, A. Kamata, M. Naruse, M. Ohtsu, Appl. Phys. B 99, 75 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, IEEE J. Sel. Top Quantum Electron. 15, 1380 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98, 283 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, M. Ohtsu, IEEE Trans. Nanotech. 7, 14 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Opt. Exp. 16, 607 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S. Ohkoshi, M. Ohtsu, Appl. Phys. B 98, 685 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, M. Ohtsu, Appl. Phys. Exp. 1, 112101 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Exp. 17, 11113 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Exp. 18, 7497 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, Y. Sekine, T. Fukuyama, M. Kitamura, M. Ohtsu, in Holograms—Recording Materials and Applications, ed. by I. Naydenova (InTech, Rijeka, 2011), p. 341Google Scholar
  25. 25.
    N. Tate, M. Naruse, W. Nomura, T. Kawazoe, T. Yatsui, M. Hoga, Y. Ohyagi, Y. Sekine, H. Fujita, M. Ohtsu, Opt. Exp. 19, 18260 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C.R. Kagan, C.B. Murray, M.G. Bawendi, Phys. Rev. B Condens. Matter. 54, 8633 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    M. Achermann, M.A. Petruska, S.A. Crooker, V.I. Klimov, J. Phys. Chem. B 107, 13782 (2003)CrossRefGoogle Scholar
  28. 28.
    T. Franzl, D.S. Koktysh, T.A. Klar, A.L. Rogach, J. Feldmann, N. Gaponik, Appl. Phys. Lett. 84, 2904 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Ohtsu (ed.), Progress in Nano-Electro-Optics II (Springer, Berlin, 2004)Google Scholar
  32. 32.
    H.J. Calmichael, in Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, 1999)Google Scholar
  33. 33.
    M. Naruse, H. Hori, K. Kobayashi, P. Holmström, L. Thylén, M. Ohtsu, Opt. Exp. 18, A544 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M. Naruse, K. Leibnitz, F. Peper, N. Tate, W. Nomura, T. Kawazoe, M. Murata, M. Ohtsu, Nano. Commun. Netw. 2, 189 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B 99, 415 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22, 215605 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B (2012). doi:  10.1007/s00340-012-5249-5
  40. 40.
    K. Kitamura, T. Kawazoe, M. Ohtsu, Appl. Phys. B 107, 293 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B (2012). doi:  10.1007/s00340-012-5285-1

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations