Single Photoelectron Manipulation and Detection with Sub-Nanosecond Resolution in CMOS Imagers

  • Shoji KawahitoEmail author
  • Keita Yasutomi
  • Keiichiro Kagawa
Part of the Nano-Optics and Nanophotonics book series (NON)


This chapter describes single photoelectron manipulation and detection with sub-nanosecond time resolution in CMOS imagers. Base on an lateral electric field control in a perfectly depleted photodiode without any potential barrier, a single photoelectron transfer in less than one nano second is possible. This property is particularly useful for time-resolved very low light level biological imaging such as in fluorescent lifetime imaging.


Fluorescence Lifetime Biological Imaging Fluorescence Lifetime Image Microscopy Cathode Voltage CMOS Image Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology under a Grant-in-Aid for Scientific Research (A), No. 22246049. The authors are grateful to Prof. Hashimoto, Prof. Niioka, Mr. Ukon, Dr. Li, Ms. Baek, and Mr. Han.


  1. 1.
    A. Periasamy, R. Clegg, FLIM Microscopy in Biology and Medicine (CRC Press, Boca Raton, 2009)Google Scholar
  2. 2.
    C. Freudiger, W. Min, B. Saar, S. Lu, G. Holton, C. He, J. Tsai, J. Kang, X. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008)Google Scholar
  3. 3.
    C. Niclass, A. Rochas, P.-A. Besse, E. Charbon,Toward a 3-D camera based on single photon avalanche diodes. IEEE J. Sel. T. Quant. Elec. 10(4), 796–802 (2004)Google Scholar
  4. 4.
    T. Spirig, P. Seitz, O. Vietze, F. Heiger, The lock-in CCD-two-dimensional synchronous detection of light. IEEE. J. Quant. Electron. 31(9), 1705–1708 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    N. Teranishi, A. Kohno, Y. Ishihara, K. Arai, No image lag photodiode structure in the interline CCD image sensor. in IEDM Technical Digest (1982) pp. 324–327Google Scholar
  6. 6.
    M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, S. Kawahito, A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel follding-integration/cyclic ADC. IEEE J. Solid-State Circ. 47(1), 272–283 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, A CMOS time-of-flight range image sensor with gates-on-field-oxide structure. IEEE Sens. J. 7(12), 1578–1586 (2007)CrossRefGoogle Scholar
  8. 8.
    H.J. Yoon, S. Itoh, S. Kawahito, A CMOS image sensor with in-pixel two-stage charge transfer for fluorescence lifetime imaging. IEEE Trans. Electron Dev. 56, 214–221 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Kawahito, Z. Li, K. Yasutomi, A CMOS image sensor with draining only demodulation pixels for time-resolved imaging, in Proceedings of 2011 International Image Sensor Workshop, Hakodate (2011) pp. 185–188Google Scholar
  10. 10.
    Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, H. Niioka, A time-resolved CMOS image sensor with draining only modulation pixels for fluorescence lifetime imaging. IEEE Trans. Electron Dev. 59(10), 2715–2722 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shoji Kawahito
    • 1
    Email author
  • Keita Yasutomi
    • 1
  • Keiichiro Kagawa
    • 1
  1. 1.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan

Personalised recommendations