Skip to main content

Lichens and Plants in Urban Environment

  • Chapter
  • First Online:
Modeling of Land-Use and Ecological Dynamics

Part of the book series: Cities and Nature ((CITIES))

Abstract

This chapter considers alteration in lichens and plants caused by urbanization, an increasingly prominent driving force shaping the Earth’s landscape. The chapter does not presume to cover all the aspects of plants and lichens change in context of urbanization. Its main focus is a short general overview of the main processes taking place in urban lichens and plants on level of organism, community and ecosystem, and of ecological services they provide. Plant species richness and composition, community and ecological processes, growth, anatomical, morphological traits and physiological processes under urbanization stress are discussed. Ecological services of city vegetation: air quality improvement, greenhouse effect reduction, abatement of urban noise, among other, are described. Methodological aspects of air pollution impact assessments with lichens are discussed. A number of case studies fulfilled in cities across the world to assess change of urban lichen communities are reported. The importance of lichens as monitors of temporal and spatial trends in urban biota state under air pollution stress is justified. City planning and management implications are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AhrnĂ©, K. (2008). Local management and landscape effects on diversity of bees, wasps and birds in urban green areas. Doctoral thesis, Swedish University of Agricultural Sciences. Uppsala: Acta Universitatis agriculturae Sueciae.

    Google Scholar 

  • Badin, G., & Nimis, P. L. (1996). Biodiversity of epiphytic lichens and air quality in the province of Gorizia (NE Italy). Studia Geobotanica, 15, 73–89.

    Google Scholar 

  • Balasooriya, B., Samson, R., Mbikwa, F., Vitharana, U. W. A., Boeckx, P., & Van Meirvenne, M. (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environmental and Experimental Botany, 65, 386–394.

    Google Scholar 

  • Barkman, J. J. (1958). Phytosociology and ecology of cryptogamic epiphytes. Assen: Van Gorcum.

    Google Scholar 

  • Baum, M. M., Kiyomiya, E. S., Kumar, S., Lappas, A. M., Kapinus, V. A., & Lord, H. C. (2001). Multicomponent remote sensing of vehicle exhaust by dispersive absorption spectroscopy. 2. Direct on-road ammonia measurements. Environmental Science and Technology, 35, 3735–3741.

    Google Scholar 

  • Beckett, K. P., Freer-Smith, P. H., & Taylor, G. (1998). Urban woodlands: Their role in reducing the effects of particulate pollution. Environmental Pollution, 99, 347–360.

    Google Scholar 

  • Bell, J. N. B., Davies, L., & Honour, S. (2004). Air pollution research in London. In A. Klumpp (Ed.), Urban air pollution, bioindication and environmental awareness (pp. 3–16). Göttingen: Cuvillier Verlag.

    Google Scholar 

  • Bell, J. N. B., Power, S. A., Jarraud, N., Agrawal, M., & Davies, C. (2011). The effects of air pollution on urban ecosystems and agriculture. International Journal of Sustainable Development & World Ecology, 18, 226–235.

    Google Scholar 

  • Bevan, R. J., & Greenhalgh, G. N. (1976). Rhytisma acerinum as a biological indicator of pollution. Environmental Pollution, 10, 271–285.

    Google Scholar 

  • Blair, R. B. (1999). Birds and butterflies along an urban gradient: Surrogate taxa for assessing biodiversity? Ecological Applications, 1, 164–170.

    Google Scholar 

  • Brightman, F. H. (1982). Erasmus Darwin claims the earliest mention of lichens and air pollution (1790). Bulletin of the British Lichen Society, 51, 18.

    Google Scholar 

  • Croci, S., Butet, A., Georges, A., Aguejdad, R., & Clergeau, P. (2008). Small urban woodlands as biodiversity conservation hot-spot: A multi-taxon approach. Landscape Ecology, 23, 1171–1186.

    Google Scholar 

  • Czamanski, D., Benenson, I., Malkinson, D., Marinov, M., Roth, R., & Wittenberg, L. (2008). Urban sprawl and ecosystems—can nature survive? International Review of Environmental and Resource Economics, 2, 321–366.

    Google Scholar 

  • Davies, K. F., & Margules, C. R. (1998). Effects of habitat fragmentation on carabid beetles: Experimental evidence. Journal of Animal Ecology, 67, 460–471.

    Google Scholar 

  • Davies, L., Bates, J. W., Bell, J. N. B., James, P. W., & Purvis, O. W. (2007). Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution, 146, 299–310.

    Google Scholar 

  • DeStefano, S., & DeGraaf, R. M. (2003). Exploring the ecology of suburban wildlife. Frontiers in Ecology and the Environment, 1(2), 95–101.

    Google Scholar 

  • Dymytrova, L. (2009). Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine). Folia Cryptogamica Estonica, 46, 33–44.

    Google Scholar 

  • Environment State and Nature Conservation in Russia in 2005. (2006). Moscow: Ministry of Natural Resources and Environment of the Russian Federation. In Russian, http://www.mnr.gov.ru/regulatory/list.php?part=1270. Accessed 04 Oct 2012.

  • Esseen, P.-A., & Renhorn, K.-A. (1998). Edge effect on an epiphytic lichen in fragmented forest. Conservation Biology, 12, 1307–1317.

    Google Scholar 

  • Estrabou, C., Filippini, E., Soria, J. P., Schelotto, G., & Rodriguez, J. M. (2011). Air quality monitoring system using lichens as bioindicators in Central Argentina. Environmental Monitoring and Assessment, 182, 375–383.

    Google Scholar 

  • FlĂ¼ckiger, W., Braun, S., & Hiltbrunner, E. (2002). Effects of air pollutants on biotic stress. In J. N. B. Bell & M. Treshow (Eds.), Air pollution and plant life (2nd ed., pp. 379–406). Chichester: Wiley.

    Google Scholar 

  • Fostad, O., & Pedersen, P. A. (2000). Container-grown tree seedling responses to sodium chloride applications in different substrates. Environmental Pollution, 109, 203–210.

    Google Scholar 

  • Freer-Smith, P. H., Holloway, S., & Goodman, A. (1997). The uptake of particulates by an urban woodland: Site description and particulate composition. Environmental Pollution, 95, 27–35.

    Google Scholar 

  • Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H., & Gaston, K. J. (2007). Psychological benefits of greenspace increase with biodiversity. Biology Letters, 3, 390–394.

    Google Scholar 

  • Gombert, S., Asta, J., & Seaward, M. R. D. (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment, 324, 183–199.

    Google Scholar 

  • Gombert, S., Asta, J., & Seaward, M. R. D. (2006). Lichens and tobacco plants as complementary biomonitors of air pollution on the Grenoble area (Isère, southeast France). Ecological Indicators, 6, 429–443.

    Google Scholar 

  • Gregg, J. W., Jones, C. G., & Dawson, T. E. (2006). Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites. Ecological Applications, 16, 2368–2381.

    Google Scholar 

  • Guderian, R. (1977). Air pollution. Phytotoxicity of acidic gases and its significance in air pollution control. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Hawksworth, D. L. (1971). Lichens as litmus for air pollution: A historical review. International Journal of Environmental Studies, 1, 281–296.

    Google Scholar 

  • Hawksworth, D. L., & Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature, 227, 145–148.

    Google Scholar 

  • Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. Journal of Applied Ecology, 39, 708–720.

    Google Scholar 

  • Hope, D., Gries, C., Zhu, W., Fagan, W. F., Redman, C. R., Grimm, N. B., Nelson, A. L., Martin, C., & Kinzig, A. (2003). Socioeconomics drive urban plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 100, 87–92.

    Google Scholar 

  • Iakovoglou, V., Thompson, J., & Burras, L. (2002). Characteristics of trees according to community population level and by land use in the U.S. Midwest. Journal of Arboriculture, 28, 59–69.

    Google Scholar 

  • Insarov, G. (1982). Epiphytic lichen sampling on tree trunks. In Problems of ecological monitoring and ecosystem modelling (Vol. 5, pp. 25–33). Leningrad: Gidrometeoizdat Publisher. In Russian with English summary.

    Google Scholar 

  • Insarov, G. (2002). A method for detecting large-scale environmental change with lichens. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens – monitoring lichens (pp. 399–403). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Insarov, G. E. (2007). Epiphytic lichens monitoring in context of air pollution/acid deposition studies of forest ecosystems in East Asian region. In Sub-manual on EANET forest vegetation monitoring (pp. 94–99). Niigata: Acid Deposition and Oxidant Research Center.

    Google Scholar 

  • Insarov, G. E., & Moutchnik, E. E. (2007). Lichens and air pollution in Moscow. In Problems of ecological monitoring and ecosystem modelling (Vol. XXI, pp. 404–434). St-Petersburg: Hydrometeoizdat. In Russian with English abstract.

    Google Scholar 

  • Insarov, G., & Schroeter, B. (2002). Lichen monitoring and climate change. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens – monitoring lichens (pp. 183–201). The Hague: Kluwer Academic.

    Google Scholar 

  • Insarov, G., Insarova, I., & Semenov, S. (1999). A system to monitor climate change with epilithic lichens. Environmental Monitoring and Assessment, 55, 279–298.

    Google Scholar 

  • Insarov, G. E., Moutchnik, E. E., & Insarova, I. D. (2010). Epiphytic lichens under air pollution stress in Moscow: Methodology for long-term monitoring. In Problems of ecological monitoring and ecosystem modelling (Vol. XXIII, pp. 277–296). Moscow: IGKE. In Russian with English abstract.

    Google Scholar 

  • Insarova, I. D., Insarov, G. E., BrĂ¥kenhielm, S., Hultengren, S., Martinson, P.-O., & Semenov, S. (1992). Lichen sensitivity and air pollution. Swedish Environment Protection Agency. Report 4007 Uppsala, 72 pp.

    Google Scholar 

  • Isocrono, D., Matteucci, E., Ferrarese, A., Pensi, E., & Piervittori, R. (2007). Lichen colonization in the city of Turin (North Italy) based on current and historical data. Environmental Pollution, 145, 258–265.

    Google Scholar 

  • Izrael, Y. A., Filippova, L. M., Insarov, G. E., Semevsky, F. N., & Semenov, S. M. (1985). Background monitoring and analysis of the reasons of global changes in Biota state. In Problems of ecological monitoring and ecosystem modelling (Vol. 7, pp. 9–26). Leningrad: Hydrometeoizdat. In Russian, with English summary.

    Google Scholar 

  • Jim, C. Y., & Chen, W. Y. (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal of Environmental Management, 88, 665–676.

    Google Scholar 

  • Kardel, F., Wuyts, K., Babanezhad, M., Vitharana, U. W. A., Wuytack, T., Potters, G., & Samson, R. (2010). Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environmental Pollution, 158, 788–794.

    Google Scholar 

  • Kardel, F., Wuyts, K., Babanezhad, M., Wuytack, T., Adriaenssens, S., & Samson, R. (2012). Tree leaf wettability as passive bio-indicator of urban habitat quality. Environmental and Experimental Botany, 75, 277–285.

    Google Scholar 

  • Kato, M., Iwata, T., Ishii, N., Hino, K., Tsutsumi, J., Nakamatsu, R., Nishime, Y., Miyagi, K., Suzuki, M., et al. (2013). In M. Kawakami (Ed.), Spatial planning and sustainable development: Approaches for achieving sustainable urban form in Asian Cities, strategies for sustainability. Chapter 15. Effects of green curtains to improve the living environment (pp. 271–286). Dordrecht: Springer Science + Business Media.

    Google Scholar 

  • Kent, M., & Coker, P. (1994). Vegetation description and analysis (p. 363). Chichester/New York/Brisbane/Toronto/Singapore: Willey.

    Google Scholar 

  • Kirschbaum, U., Cezanne, R., Eichler, M., Hanewald, K., & Windisch, U. (2012). Long-term monitoring of environmental change in German towns through the use of lichens as biological indicators: Comparison between the surveys of 1970, 1980, 1985, 1995, 2005 and 2010 in Wetzlar and Giessen. Environmental Sciences Europe, 24, 1–19. http://www.enveurope.com/content/24/1/19. Accessed 03 Mar 2013.

    Google Scholar 

  • Knapp, S., KĂ¼hn, I., Schweiger, O., & Klotz, S. (2008). Challenging urban species diversity: Contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters, 11, 1054–1064.

    Google Scholar 

  • Knapp, S., KĂ¼hn, I., Bakker, J. P., Kleyer, M., Klotz, S., Ozinga, W. A., Poschlod, P., Thompson, K., Thuiller, W., & Romermann, C. (2009). How species traits and affinity to urban land use control large-scale species frequency. Diversity and Distributions, 15, 533–546.

    Google Scholar 

  • Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and conservation. Environmental Pollution, 159, 1974–1983.

    Google Scholar 

  • Kowarik, I., Fischer, L. K., Säumel, I., Westermann, J. R., et al. (2011). Plants in urban settings: From patterns to mechanisms and ecosystem services. In W. Endlicher (Ed.), Perspectives in urban ecology (pp. 135–166). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kricke, R., & Loppi, S. (2002). Bioindication: The I.A.P. approach. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens – monitoring lichens (pp. 21–37). Dordrecht: Kluwer Academic.

    Google Scholar 

  • KĂ¼hn, I., & Klotz, S. (2006). Urbanization and homogenization – comparing the floras of urban and rural areas in Germany. Biological Conservation, 127, 292–300.

    Google Scholar 

  • KĂ¼hn, I., Brandl, R., & Klotz, S. (2004). The flora of German cities is naturally species rich. Evolutionary Ecology Research, 6, 749–764.

    Google Scholar 

  • Kunina, I. M., Insarova, I. D., & Trushin, S. B. (1979). The effect of SO2 on metabolism of plant cell. In Problems of ecological monitoring and ecosystem modelling (Vol. II, pp. 87–124). Leningrad: Hydrometeoizdat. In Russian.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology: Ecophysiology and stress physiology of functional groups (4th ed., pp. 437–450). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Larsen, R. S., Bell, J. N. B., James, P. W., Chimonides, J., Rumsey, F. J., Tremper, A., & Purvis, W. O. (2007). Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environmental Pollution, 146, 332–340.

    Google Scholar 

  • Laundon, J. R., & Waterfield, A. (2007). William Borrer’s lichens in the supplement to the English botany 1826–1866. Botanical Journal of the Linnean Society, 154, 381–392.

    Google Scholar 

  • LeBlanc, F., & DeSloover, J. (1970). Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany, 48, 1485–1496.

    Google Scholar 

  • Leveau, C. M., & Leveau, L. M. (2005). Avian community response to urbanization in the Pampean region, Argentina. Ornitologia Neotropical, 16, 503–510.

    Google Scholar 

  • Lisowska, M. (2011). Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement. Environmental Monitoring and Assessment, 179, 177–190.

    Google Scholar 

  • Litschke, T., & Kuttler, W. (2008). On the reduction of urban particle concentration by vegetation – a review. Meteorologische Zeitschrift, 17, 229–240.

    Google Scholar 

  • Llop, E., Pinho, P., Matos, P., Pereira, M., & Branquinho, C. (2012). The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecological Indicators, 13, 215–221.

    Google Scholar 

  • Loppi, S., & Corsini, A. (2003). Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in town of Pistoia (C Italy). Environmental Monitoring and Assessment, 86, 289–301.

    Google Scholar 

  • Loppi, S., Ivanov, D., & Boccardi, R. (2002). Biodiversity of epiphytic lichens and air pollution in the town of Siena (central Italy). Environmental Pollution, 116, 123–128.

    Google Scholar 

  • Loppi, S., Bosi, A., Signorini, C., & De Dominicis, V. (2003). Lichen recolonization of Tilia trees in Arezzo (Tuscany, central Italy) under conditions of decreasing air pollution. Cryptogamie Mycologie, 24, 175–185.

    Google Scholar 

  • Loppi, S., Frati, L., Paoli, L., Bigagli, L., Rossetti, C., Bruscoli, C., & Corsini, A. (2004). Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of the Total Environment, 326, 113–122.

    Google Scholar 

  • Luley, C. J., & Bond, J. (2002). A plan to integrate management of urban trees into air quality planning, report to Northeast State Foresters Association (p. 73). Kent: Davey Resource Group.

    Google Scholar 

  • Lynch, K. (2012). Sustainable urbanisation. In F. Harris (Ed.), Global environmental issues (Vol. 2, pp. 203–235). Chihester: Wiley

    Google Scholar 

  • Magura, T., TĂ³thmĂ©rĂ©sz, B. B., & Molnar, T. (2008). A species-level comparison of occurrence patterns in carabids along an urbanisation gradient. Landscape and Urban Planning, 86, 134–140.

    Google Scholar 

  • McDonnell, M., Pickett, S. T. A., & Groffman, P. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1, 21–36.

    Google Scholar 

  • McKinney, M. L. (2002). Urbanization, biodiversity, and conservation. Bioscience, 52, 883–890.

    Google Scholar 

  • McPherson, E. G., Nowak, D. J., & Rowntree, R. E. (1994). Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA General Technical Report NE-186, 202 pp.

    Google Scholar 

  • McPherson, G., Simpson, J., Peper, P., Xiao, Q., Pettinger, D., & Hodel, D. (2001). Tree guidelines for Inland empire communities. Report of western center for urban forest research and education, USDA forest service, Pacific Southwest Research Station. Web http://www.fs.fed.us/psw/programs/uesd/uep/products/2/cufr_52.pdf

  • Monge-NĂ¡jera, J., GonzĂ¡lez, M. I., Rossi, M. R., & MĂ©ndez-Estrada, V. H. (2002). Twenty years of lichen cover change in a tropical habitat (Costa Rica) and its relation with air pollution. Revista de BiologĂ­a Tropical, 50, 309–319.

    Google Scholar 

  • Munzi, S., Ravera, S., & Caneva, G. (2007). Epiphytic lichens as indicators of environmental quality in Rome. Environmental Pollution, 146, 350–358.

    Google Scholar 

  • Nikula, S., Vapaavuori, E., & Manninen, S. (2010). Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition. Environmental Pollution, 158, 2132–2142.

    Google Scholar 

  • Nimis, P. L., Scheidegger, C., & Wolseley, P. A. (Eds.). (2002). Monitoring with lichens – Monitoring lichens. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116, 381–389.

    Google Scholar 

  • Nowak, D. J., & Dwyer, J. F. (2007). Understanding the benefits and costs of urban forest ecosystems. In J. E. Kuser (Ed.), Urban and community forestry in the Northeast (Vol. 2, pp. 25–46). New York: Springer.

    Google Scholar 

  • Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, G., Luley, C. J., & Crane, D. E. (2000). A modeling study of the impact of urban trees on ozone. Atmospheric Environment, 34, 1601–1613.

    Google Scholar 

  • Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4, 115–123.

    Google Scholar 

  • Oke, T. R. (1995). The heat island of the urban boundary layer: Characteristics, causes and effects. In J. E. Cermak (Ed.), Wind climate in cities (pp. 81–107). Amsterdam: Kluwer Academic.

    Google Scholar 

  • Olden, J. D. (2008). Biotic homogenization. In ELS. Chichester: Wiley. doi:10.1002/9780470015902.a0020471. http://www.els.net.

    Google Scholar 

  • Pandey, S., & Nagar, P. K. (2002). Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biologia Plantarum, 45, 291–294.

    Google Scholar 

  • Paoletti, E. (2009). Ozone and urban forests in Italy. Environmental Pollution, 157, 1506–1512.

    Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., Kaushal, S. S., Marshall, V., McGrath, B. P., Nilon, C. H., Pouyat, R. V., Szlavecz, K., Troy, A., & Warren, P. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92, 331–362.

    Google Scholar 

  • Purvis, W. (2007). Lichens in a changing pollution environment: An introduction. Environmental Pollution, 146, 291–292.

    Google Scholar 

  • Purvis, W. (2010). Lichens and industrial pollution. In L. C. Batty & K. B. Hallberg (Eds.), Ecology of industrial pollution (pp. 41–69). Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo: Cambridge University Press.

    Google Scholar 

  • PyÅ¡ek, P. (1998). Alien and native species in Central European urban floras: A quantitative comparison. Journal of Biogeography, 25, 155–163.

    Google Scholar 

  • Rango, J. (2005). Arthropod communities on creosote bush (Larrea tridentata) in desert patches of varying degrees of urbanization. Biodiversity and Conservation, 14, 2185–2206.

    Google Scholar 

  • Ranta, P. (2001). Changes in urban lichen diversity after a fall in sulphur dioxide levels in the city of Tampere, SW Finland. Annales Botanici Fennici, 38, 295–304.

    Google Scholar 

  • Roitman, A. A. (1989). Analysis of non-uniform hierarchical data sets and its role in ecological studies. In Problems of ecological monitoring and ecosystem modelling (Vol. XII, pp. 324–335). Leningrad: Hydrometeoizdat. In Russian, with English summary.

    Google Scholar 

  • Salvati, L., & Zitti, M. (2012). Monitoring vegetation and land use quality along the rural-urban gradient in a Mediterranean region. Applied Geography, 32, 896–903.

    Google Scholar 

  • Sanesi, G., Padoa-Schioppa, E., Lorusso, L., & Lafortezza, R. (2009). Avian ecological diversity as an indicator of urban forest functionality. Results from two case studies in Northern and Southern Italy. Arboriculture and Urban Forestry, 35, 80–86.

    Google Scholar 

  • Saunders, P. J. W. (1966). The toxicity of sulphur dioxide to Diplocarpon rosae Wolf causing blackspot of roses. Annals of Applied Biology, 58, 103–114.

    Google Scholar 

  • Searle, S. Y., Turnbull, M. H., Boelman, N. T., Schuster, W. S. F., Yakir, D., & Griffin, K. L. (2012). Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiology, 32, 389–400. doi:10.1093/treephys/tps027.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.). (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • TĂ³thmĂ©rĂ©sz, B., MĂ¡theb, I., BalĂ¡zs, E., & Magura, T. (2011). Responses of carabid beetles to urbanization in Transylvania (Romania). Landscape and Urban Planning, 101, 330–337.

    Google Scholar 

  • Trass, H. (1973). Lichen sensitivity to air pollution and index of poleotolerance. Folia Cryptog Estonica, 3, 19–22.

    Google Scholar 

  • Trunk Epiphytes. (2004). Manual for integrated monitoring, UN ECE convention on long-range transboundary air pollution, international cooperative programme on integrated monitoring of air pollution effects on ecosystems, ICP IM programme centre. Helsinki: Finnish Environment Institute. http://www.environment.fi/default.asp?contentid=21139&lan=en. Accessed 04 Oct 2012.

  • Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kazmierszak, A., & Niemelä, J. (2007). Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landscape and Urban Planning, 81, 167–178.

    Google Scholar 

  • UNDESA. (2011). World urbanization prospects: The 2011 revision. New York: United Nations Department of Economic and Social Affairs. http://esa.un.org/unpd/wup/index.htm. Accessed 17 Aug 2012.

    Google Scholar 

  • US EPA. (2013). Reducing urban heat islands: Compendium and strategies. Trees and Vegetation, 32.

    Google Scholar 

  • van Herk, C. M. (2001). Bark pH and susceptibility to toxic air pollutants as independent cause of changes in epiphytic lichen composition in space and time. The Lichenologist, 33, 419–441.

    Google Scholar 

  • von der Lippe, M., & Kowarik, I. (2007). Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conservation Biology, 21, 986–996.

    Google Scholar 

  • Washburn, S., & Culley, T. (2006). Epiphytic macrolichens of the greater Cincinnati metropolitan area—part II: Distribution, diversity and urban ecology. Bryologist, 109, 516–526.

    Google Scholar 

  • Wuytack, T., Verheyen, K., Wuyts, K., Kardel, F., Adriaenssens, S., & Samson, R. (2010). The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environmental Monitoring and Assessment, 171, 197–204.

    Google Scholar 

  • Yokohari, M., Takeuchi, K., Watanabe, T., & Yokota, S. (2008). Beyond greenbelts and zoning: A new planning concept for the environment of Asian Mega-Cities. In J. M. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G. Bradley, C. Ryan, U. Simon, & C. ZumBrunnen (Eds.), Urban ecology. An international perspective on the interaction between human and nature (pp. 783–796). New York: Springer.

    Google Scholar 

Download references

Acknowledgement

Authors are grateful to an anonymous reviewer for valuable comments and linguistic advises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory E. Insarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Insarov, G.E., Insarova, I.D. (2013). Lichens and Plants in Urban Environment. In: Malkinson, D., Czamanski, D., Benenson, I. (eds) Modeling of Land-Use and Ecological Dynamics. Cities and Nature. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40199-2_9

Download citation

Publish with us

Policies and ethics