Skip to main content

Future Suburban Development and the Environmental Implications of Lawns: A Case Study in New England, USA

  • Chapter
  • First Online:
Modeling of Land-Use and Ecological Dynamics

Part of the book series: Cities and Nature ((CITIES))

Abstract

Lawns cover more land than irrigated corn in the United States according to the most recent estimates (Milesi et al. 2009). The associated ecological ramifications – such as habitat fragmentation, water quality and availability – may be far-reaching. The way lawns are maintained, especially intensive fertilization and watering, also presents risks for water use and quality, nutrient cycling, urban climate regimes, and even human health. However, the lack of broad-extent, high-resolution land cover data has limited the ability of researchers to measure or project the extent of lawns. In this chapter, we first produce a high resolution (0.5 m) land-cover classification to quantify existing lawn extent for the year 2005 in the Plum Island Ecosystem (PIE), a collection of 26 suburban towns northeast of Boston, MA, USA. We then use this dataset in conjunction with the GEOMOD land-change model to project lawn extent under two scenarios of urban growth for the year 2030. We find that in 2005, 76 km2 of lawn – defined as grass on residential land – existed in the PIE study region. Under a Current Trends scenario, we project residential lawns may increase by 7.0 % to 81 km2, while under a Smart Growth scenario we project a 1.6 % increase to 77 km2. We estimate this could result in up to 61 million additional liters of annual water use under the Current Trends scenario, and 14 million under Smart Growth, putting additional stress on utilities that already face regular water shortages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, C., Green, G., Grove, J., Evans, T. P., & Schweik, C. (2002). A review and assessment of land-use change models: dynamics of space, time, and human choice, I. University, ed. Bloomington: Centre for the Study of Institutions Population and Environmental Change.

    Google Scholar 

  • Benz, U., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.

    Article  Google Scholar 

  • Berry, M. W., Flamm, R. O., Hazen, B. C., & MacIntyre, R. L. (1994). The Land-use Change Analysis System (LUCAS) for evaluating landscape management decisions. Knoxville: University of Tennessee.

    Google Scholar 

  • Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Interfacing Remote Sensing and GIS, 6, 12–17.

    Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2–16.

    Article  Google Scholar 

  • Blaschke, T., Lang, S., Lorup, E., Strobl, J., & Zeil, P. (2000). Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. Environmental Information for Planning, Politics and the Public, 2, 555–570.

    Google Scholar 

  • Burnett, C., & Blaschke, T. (2003). A multi-scale segmentation/object relationship modeling methodology for landscape analysis. Ecological Modelling, 168, 233–249.

    Article  Google Scholar 

  • Carrico, A. R., Fraser, J., & Bazuin, J. T. (2012). Green with envy: Psychological and social predictors of lawn fertilizer application. Environment and Behavior, 45, 427–454.

    Article  Google Scholar 

  • Castella, J., Trung, T., & Boissau, S. (2005). Participatory simulation of land-use changes in the northern mountains of Vietnam: The combined use of an agent-based model, a role-playing game, and a geographic information system. Ecology and Society, 10, 27.

    Google Scholar 

  • Chow, W. T. L., Brennan, D., & Brazel, A. J. (2011). Urban heat island research in Phoenix, Arizona: Theoretical contributions and policy applications. Bulletin of the American Meteorological Society, 93, 517–530.

    Article  Google Scholar 

  • Domene, E., & Saurí, D. (2006). Urbanisation and water consumption: Influencing factors in the metropolitan region of Barcelona. Urban Studies, 43, 1605.

    Article  Google Scholar 

  • Domene, E., Saurí, D., & Parés, M. (2005). Urbanization and sustainable resource use: The case of garden watering in the Metropolitan Region of Barcelona. Urban Geography, 26, 520–535.

    Article  Google Scholar 

  • Engelen, G., White, R., & Nijs, T. (2003). Environment explorer: Spatial support system for the integrated assessment of socio-economic and environmental policies in the Netherlands. Integrated Assessment, 4, 97–105.

    Article  Google Scholar 

  • Fissore, C., Baker, L., Hobbie, S., King, J., McFadden, J., Nelson, K., & Jakobsdottir, I. (2011). Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the Minneapolis-Saint Paul, Minnesota, urban region. Ecological Applications, 21, 619–639.

    Article  Google Scholar 

  • Giner, N. M., Polsky, C., Pontius, R. G., Jr., & Runfola, D. M. (2013). Understanding the determinants of lawn landscapes: A fine-resolution spatial statistical analysis in suburban Boston, Massachusetts, USA. Landscape and Urban Planning, 111, 25–33.

    Article  Google Scholar 

  • Glennon, R. J. (2002). Water follies: Groundwater pumping and the fate of America’s fresh waters. Washington, D.C.: Island Press.

    Google Scholar 

  • Glennon, R. J. (2009). Unquenchable: America’s water crisis and what to do about it. Washington, D.C.: Island Press.

    Google Scholar 

  • Gober, P., Brazel, A., Quay, R., Myint, S., Grossman-Clarke, S., Miller, A., & Rossi, S. (2010). Using watered landscapes to manipulate urban heat island effects: How much water will it take to cool Phoenix? Journal of the American Planning Association, 76, 109–121.

    Article  Google Scholar 

  • Groffman, P. M., Law, N. L., Belt, K. T., Band, L. E., & Fisher, G. T. (2004). Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems, 7, 393–403.

    Google Scholar 

  • Hanlon, B., Short, J. R., & Vicino, T. J. (2010). Cities and suburbs: New metropolitan realities in the US. New York, NY: Routledge.

    Google Scholar 

  • Harris, E. M., Martin, D. G., Polsky, C., Denhardt, L., & Nehring, A. (2012a). The role of emotions in suburban yard management practices. Professional Geographer, 65, 345–361.

    Article  Google Scholar 

  • Harris, E. M., Polsky, C., Larson, K., Garvoille, R., Martin, D. G., Brumand, J., Ogden, L. (2012b). Explaining U.S. lawncare practices to improve management: Evidence from suburban Boston, Miami, and Phoenix. Human Ecology, online.

    Google Scholar 

  • Hilferink, M., & Rietveld, P. (1998). Land use scanner: An integrated GIS based model for long term projections of land use in urban and rural areas. Journal of Geographical Systems, 1, 155–177.

    Article  Google Scholar 

  • Hill, T. D., & Polsky, C. (2007). Suburbanization and drought: A mixed methods vulnerability assessment in rainy Massachusetts. Environmental Hazards, 7(4), 291–301.

    Article  Google Scholar 

  • House-Peters, L. A., & Chang, H. (2011). Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resources Research, 47, W05401.

    Article  Google Scholar 

  • Ipswich Utilities. (2011). Available from: http://www.ipswichutilities.org/

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University.

    Google Scholar 

  • Johnston, R. A., Shabazian, D. R., & Gao, S. (2003). UPlan: A versatile urban growth model for transportation planning. Transportation Research Record: Journal of the Transportation Research Board, 1831, 202–209.

    Article  Google Scholar 

  • Karl, T., Fall, R., Jordan, A., & Lindinger, W. (2001). On-line analysis of reactive VOCs from urban lawn mowing. Environmental Science & Technology, 35, 2926–2931.

    Article  Google Scholar 

  • Klosterman, R. E. (1999). The what if? Collaborative planning support system. Environment and Planning B, 26, 393–408.

    Article  Google Scholar 

  • Krahe, J., Runfola, D. M., & Polsky, C. (2012). The impact of pricing structure on residential and seasonal water consumption in suburban Boston, MA, in Department of Economics. Worcester.

    Google Scholar 

  • Krass, B. (2003). Combating urban sprawl in Massachusetts: Reforming the zoning act through legal challenges. Environmental Affairs, 30, 605–639.

    Google Scholar 

  • Landis, J., & Zhang, M. (1998). The second generation of the California urban futures model. Environment and Planning B: Planning and Design, 25, 795–824.

    Article  Google Scholar 

  • Lang, R. E., Blakely, E. J., & Gough, M. Z. (2005). Keys to the new metropolis: America’s big, fast-growing suburban counties. Journal of the American Planning Association, 71(4), 381–391.

    Article  Google Scholar 

  • Larson, K. L., Casagrande, D., Harlan, S. L., & Yabiku, S. T. (2009). Residents’ yard choices and rationales in a desert city: Social priorities, ecological impacts, and decision tradeoffs. Environmental Management, 44, 921–937.

    Article  Google Scholar 

  • Lo, C., & Yang, X. (2002). Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia metropolitan area. PE & RS- Photogrammetric Engineering & Remote Sensing, 68(10), 1073–1082.

    Google Scholar 

  • MAPC. (2010). Metropolitan area planning council. Boston: Metropolitan Area Planning Council.

    Google Scholar 

  • MassGIS. (2011). Office of Geographic and Environmental Information. Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs.

    Google Scholar 

  • Mayer, P., & DeOreo, W. (1999). Residential end uses of water. Denver: American Water Works Association.

    Google Scholar 

  • Milesi, C., Running, S. W., Elvidge, C. D., Dietz, J. B., Tuttle, B. T., & Nemani, R. R. (2005). Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management, 36, 426–438.

    Article  Google Scholar 

  • Milesi, C., Elvidge, C., & Nemani, R. (2009). Assessing the extent of urban irrigated areas in the United States. In Remote sensing of global croplands for food security. San Fransisco: NASA Ames Ecological Forecasting Lab. Retrieved from: http://ecocast.arc.nasa.gov/pubs/pdfs/2009/Milesi_Urban_BookChapter.pdf

  • Nielson, L., & Smith, C. L. (2005). Influence on residential yard care and water quality: Tualatin watershed, Oregon. JAWRA Journal of the American Water Resources Association, 41, 93–106.

    Article  Google Scholar 

  • Pijanowski, B., Gage, S., & Long, D. (1997, February). The land transformation model. Paper presented at: Land Use Modeling Workshop, Sioux Falls.

    Google Scholar 

  • Polsky, C., Pontius Jr., R. G., Decatur, A., Giner, N., Rahul, R., & Runfola, D. M. (2012). Mapping lawns using an object-oriented methodology with high-resolution four-band aerial photography: The twenty-sex towns of the Ipswich and Parker River Watersheds, Massachusetts. In George Perkins Marsh Working Paper. Worcester: Clark University.

    Google Scholar 

  • Pinto, P., Cabral, P., Caetano, M., & Alves, M. F. (2009). Urban growth on coastal erosion vulnerable stretches. Journal of Coastal Research, 56(2), 1567–1571.

    Google Scholar 

  • Pontius, R. G. J., Cornell, J., & Hall, A. S. C. (2001). Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation for Costa Rica. Agriculture, Ecosystems & Environment, 85, 191–203.

    Article  Google Scholar 

  • Priest, M., Williams, D., & Bridgman, H. (2000). Emissions from in-use lawn-mowers in Australia. Atmospheric Environment, 34, 657–664.

    Article  Google Scholar 

  • Robbins, P. (2007). Lawn people: How grasses, weeds, and chemicals make us who we are. Philadelphia: Temple University Press.

    Google Scholar 

  • Robbins, P., & Birkenholtz, T. (2003). Turfgrass revolution: Measuring the expansion of the American lawn. Land Use Policy, 20, 181–194.

    Article  Google Scholar 

  • Robbins, P., & Sharp, J. T. (2003). Producing and consuming chemicals: The moral economy of the American lawn. Economic Geography, 79, 425–451.

    Article  Google Scholar 

  • Roy Chowdhury, R., Larson, K., Grove, M., Polsky, C., Cook, E., Onsted, J., & Ogden, L. (2011). A multi-scalar approach to theorizing socio-ecological dynamics of urban residential landscapes. Cities and the Environment (CATE), 4, 6.

    Google Scholar 

  • Runfola, D. M., Polsky, C., Nicolson, C., Giner, N., Pontius, R. G., Jr., Krahe, J., & Decatur, A. (2013). A growing concern? Examining the influence of lawn size on residential water use in suburban Boston, MA, USA. Landscape and Urban Planning, 119, 112–123.

    Article  Google Scholar 

  • Runfola, D. M., & Pontius, R. G., Jr. (2013). Quantifying the temporal instability of land change transitions. International Journal of GIS, 27(9), 1696–1716.

    Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26, 525–552.

    Article  Google Scholar 

  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Tu, J., Xiz, Z., Clark, K. C., & Frei, A. (2007). Impact of urban sprawl on water quality in Eastern Massachusetts, USA. Environmental Management, 40, 183–200.

    Article  Google Scholar 

  • United States Census Bureau (2011). Decennial Census. http://www.census.gov/.

    Google Scholar 

  • US Census (2013). http://www.census.gov/

  • Veldkamp, A., & Fresco, L. (1996). CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling, 91, 231–248.

    Article  Google Scholar 

  • Waddell, P. (2002). Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68, 297–314.

    Article  Google Scholar 

  • Walker, R., Drzyzga, S. A., Li, Y., Qi, J., Caldas, M., Arima, E., & Vergara, D. (2004). A behavioral model of landscape change in the Amazon basin: The colonist case. Ecological Applications, 14, 299–312.

    Article  Google Scholar 

  • Wentz, E. A., & Gober, P. (2007). Determinants of small-area water consumption for the city of Phoenix, Arizona. Water Resources Management, 21, 1849–1863.

    Article  Google Scholar 

  • Yang, X., & Lo, C. (2003). Modelling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, 17, 463–488.

    Article  Google Scholar 

  • Zhou, W., Troy, A., & Grove, M. (2008). Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors, 8, 1613–1636.

    Article  Google Scholar 

Download references

Acknowledgements

The United States’ National Science Foundation (NSF) supported this work via the following programs: Long Term Ecological Research via grants OCE-0423565 and OCE-1026859 for Plum Island Ecosystems and OCE-0620959 for Georgia Coastal Ecosystems, Coupled Natural Human Systems via grant BCS-0709685, Research Experiences for Undergraduates Site via grant SES-0849985, Decision-Making Under Uncertainty via grant SES-0951366, Urban Long Term Research Areas via grant BCS-0948984, and a supplement grant entitled “Maps and Locals (MALS)” via grant DEB-0620579. The work has also benefited from the NICHD funded University of Colorado Population Center (grant R21 HD51146) for research, administrative, and computing support. Any opinions, findings, conclusions, or recommendation expressed in this paper are those of the authors and do not necessarily reflect those of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Miller Runfola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Runfola, D.M., Polsky, C., Giner, N., Pontius, R.G., Nicolson, C. (2013). Future Suburban Development and the Environmental Implications of Lawns: A Case Study in New England, USA. In: Malkinson, D., Czamanski, D., Benenson, I. (eds) Modeling of Land-Use and Ecological Dynamics. Cities and Nature. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40199-2_7

Download citation

Publish with us

Policies and ethics