Skip to main content

Algebraic Models and Their Use in Systems Biology

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

Progress in systems biology relies on the use of mathematical and statistical models for system-level studies of biological processes. Several different modeling frameworks have been used successfully, including traditional differential-equation-based models, a variety of stochastic models, agent-based models, and Boolean networks, to name some common ones. This chapter focuses on discrete models, and describes a mathematical approach to the construction and analysis of discrete models which relies on combinatorics and computational algebraic geometry. The underlying mathematical concept is that of a polynomial dynamical system over a finite field. Examples are given of the advantages of this approach, and several applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Albert, H.G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003)

    Google Scholar 

  2. E.R. Álvarez-Buylla, Á. Chaos, M. Aldana, M. Benítez, Y. Cortes-Poza, C. Espinosa-Soto, D.A. Hartasánchez, R.B. Lotto, D. Malkin, G.J. Escalera Santos, P. Padilla-Longoria, Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3(11), e3626 (2008)

    Google Scholar 

  3. J. Aracena, J. Demongeot, E. Goles, Fixed points and maximal independent sets in AND-OR networks. Discret. Appl. Math. 138(3), 277–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Bonneau, Learning biological networks: from modules to dynamics. Nat. Chem. Biol. 4(11), 658–664 (2008)

    Article  Google Scholar 

  5. D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102(41), 14593–14598 (2005)

    Article  Google Scholar 

  6. A. Bruex, R.M. Kainkaryam, Y. Wieckowski, Y.H. Kang, C. Bernhardt, Y. Xia, X. Zheng, J.Y. Wang, M.M. Lee, P. Benfey, P.J. Woolf, J. Schiefelbein, A gene regulatory network for root epidermis cell differentiation in arabidopsis. PLoS Genet. 8(1), e1002446 (2012). PMID: 22253603

    Google Scholar 

  7. F.J. Bruggeman, H.V. Westerhoff, The nature of systems biology. Trends Microbiol. 15(1), 45–50 (2007)

    Article  Google Scholar 

  8. A. Butte, I. Kohane, Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 415–426 (2000)

    Google Scholar 

  9. I. Cantone, L. Marucci, F. Iorio, M. Ricci, V. Belcastro, M. Bansal, S. Santini, M. di Bernardo, D. di Bernardo, M. Cosma, A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)

    Article  Google Scholar 

  10. C. Chaouiya, E. Remy, P.R.D. Thieffry, Qualitative modeling of genetic networks: from logical regulatory graphs to standard Petri nets. Springer Lect. Notes Comput. Sci. 3099, 137–156 (2004)

    Article  MathSciNet  Google Scholar 

  11. M. Chaves, E. Sontag, R. Albert, Methods of robustness analysis for Boolean models of gene control networks. IET Syst. Biol. 153, 154–167 (2006)

    Google Scholar 

  12. J. Chifman, A. Kniss, P. Neupane, I. Williams, B. Leung, Z. Deng, P. Mendes, V. Hower, F.M. Torti, S.A. Akman, S.V. Torti, R. Laubenbacher, The core control system of intracellular iron homeostasis: a mathematical model. J. Theor. Biol. 300, 91–99 (2012). PMID: 22286016

    Article  Google Scholar 

  13. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 2nd edn. (Springer, New York, 1997)

    Google Scholar 

  14. P. Dao, R. Colak, R. Salari, F. Moser, E. Davicioni, A. Schonhuth, M. Ester, Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26(18), 625–631 (2010)

    Article  Google Scholar 

  15. M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2), e1672 (2008)

    Google Scholar 

  16. A. de la Fuente, P. Brazhnik, P. Mendes, Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18(8), 395–398 (2002)

    Article  Google Scholar 

  17. A. de la Fuente, N. Bing, I. Hoeschele, P. Mendes, Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18), 3565–3574 (2004)

    Article  Google Scholar 

  18. E. Dimitrova, L.D. Garcia-Puente, F. Hinkelmann, A.S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, P. Vera-Licona, Polynome (2010). Available at http://polymath.vbi.vt.edu/polynome/

  19. E. Dimitrova, L.D. Garcìa-Puente, F. Hinkelmann, A.S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, P. Vera-Licona, Parameter estimation for Boolean models of biological networks. Theor. Comput. Sci. 412(26), 2816–2826 (2011)

    Article  MATH  Google Scholar 

  20. J. Faith, B. Hayete, J. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. Collins, T. Gardner, Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)

    Google Scholar 

  21. D. Formanowicz, A. Sackmann, P. Formanowicz, J. Błazewicz, Petri net based model of the body iron homeostasis. J. Biomed. Inform. 40(5), 476–485 (2007). PMID: 17258508

    Article  Google Scholar 

  22. T. Gardner, D. di Bernardo, D. Lorenz, J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

    Article  Google Scholar 

  23. A. Garg, K. Mohanram, A. Di Cara, G. De Micheli, I. Xenarios, Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25(12), i101–i109 (2009)

    Article  Google Scholar 

  24. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  25. D. Gillespie, Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  26. D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry (1992). Available at http://www.math.uiuc.edu/Macaulay2/http://www.math.uiuc.edu/Macaulay2/

  27. A. Haury, F. Mordelet, P. Vera-Licona, J. Vert, TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 145 (2012)

    Article  Google Scholar 

  28. F. Hinkelmann, A.S. Jarrah, Inferring biologically relevant models: nested canalyzing functions. ISRN Biomath. 2012, 7 (2012)

    Article  Google Scholar 

  29. F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, A. Veliz-Cuba, G. Blekherman, R. Laubenbacher, ADAM: analysis of analysis of dynamic algebraic models (2010). Available at http://adam.vbi.vt.edu/http://adam.vbi.vt.edu/

  30. F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, G. Blekherman, A. Veliz-Cuba, R. Laubenbacher, ADAM: Analysis of discrete models of biological systems using computer algebra. BMC Bioinform. 12(1), 295 (2011)

    Google Scholar 

  31. C. Hong, M. Lee, D. Kim, D. Kim, K.-H. Cho, I. Shin, A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network. BMC Syst. Biol. 6(1), 129 (2012). PMID: 23017186

    Google Scholar 

  32. A. Jarrah, B. Raposa, R. Laubenbacher, Nested canalyzing, unate cascade, and polynomial functions. Physica D 233, 167–174 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. A.S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, Reverse-engineering of polynomial dynamical systems. Adv. Appl. Math. 39(4), 477–489 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Jarrah, R. Laubenbacher, A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean network models. Bull. Math. Biol. 72, 1425–1447 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. S.A. Kauffman, The large-scale structure and dynamics of gene control circuits: an ensemble approach. J. Theor. Biol. 44, 167 (1973)

    Article  Google Scholar 

  36. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. 100(25), 14796–14799 (2003)

    Article  Google Scholar 

  37. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. 101(49), 17102–17107 (2004)

    Article  Google Scholar 

  38. J.G. Klotz, R. Heckel, S. Schober, Bounds on the average sensitivity of nested canalizing functions. PLoS ONE 8(5), e64371 (2013)

    Google Scholar 

  39. N. Kramer, J. Schafer, A. Boulesteix, Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinform. 10, 384 (2009)

    Article  Google Scholar 

  40. R. Küffner, T. Petri, P. Tavakkolkhah, L. Windhager, R. Zimmer, Inferring gene regulatory networks by ANOVA. Bioinformatics 28(10), 1376–1382 (2012)

    Article  Google Scholar 

  41. R. Laubenbacher, B. Stigler, A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229, 523–537 (2004)

    Article  MathSciNet  Google Scholar 

  42. R. Layek, A. Datta, R. Pal, E.R. Dougherty, Adaptive intervention in probabilistic Boolean networks. Bioinformatics 25(16), 2042–2048 (2009)

    Article  Google Scholar 

  43. Y. Li, J.O. Adeyeye, D. Murrugarra, B. Aguilar, R. Laubenbacher, Boolean nested canalizing functions: a comprehensive analysis. Theor. Comput. Sci. 481(0), 24–36 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. J. Liang, J. Han, Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst. Biol. 6(1), 113 (2012)

    MathSciNet  Google Scholar 

  45. R. Lidl, H. Niederreiter, Finite Fields (Cambridge University Press, New York, 1997)

    Google Scholar 

  46. A. Madar, A. Greenfield, E. Vanden-Eijnden, R. Bonneau, DREAM3: network inference using dynamic context likelihood of relatedness and the Inferelator. PLoS ONE 5(3), e9803 (2010)

    Google Scholar 

  47. D. Murrugarra, R. Laubenbacher, Regulatory patterns in molecular interaction networks. J. Theor. Biol. 288(0), 66–72 (2011)

    Article  MathSciNet  Google Scholar 

  48. D. Murrugarra, R. Laubenbacher, Multi-states nested canlyzing functions. Phys. D Nonlinear Phenom. 241, 921–938 (2012)

    Article  MathSciNet  Google Scholar 

  49. D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S. Arat, R. Laubenbacher, Modeling stochasticity and variability in gene regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2012, 5 (2012)

    Article  Google Scholar 

  50. C. Müssel, M. Hopfensitz, H.A. Kestler, BoolNet – an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010)

    Article  Google Scholar 

  51. A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, C. Chaouiya, Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)

    Google Scholar 

  52. A. Naldi, E. Remy, D. Thieffry, C. Chaouiya, A reduction of logical regulatory graphs preserving essential dynamical properties, in Computational Methods in Systems Biology, ed. by P. Degano, R. Gorrieri. Volume 5688 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2009), pp. 266–280

    Google Scholar 

  53. R. Porreca, E. Cinquemani, J. Lygeros, G. Ferrari-Trecate, Identification of genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)

    Article  Google Scholar 

  54. L. Raeymaekers, Dynamics of Boolean networks controlled by biologically meaningful functions. J. Theor. Biol. 218(3), 331–341 (2002)

    Article  MathSciNet  Google Scholar 

  55. A.S. Ribeiro, Stochastic and delayed stochastic models of gene expression and regulation. Math. Biosci. 223(1), 1–11 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. A.S. Ribeiro, S.A. Kauffman, Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)

    Article  MathSciNet  Google Scholar 

  57. A. Ribeiro, R. Zhu, S.A. Kauffman, A general modeling strategy for gene regulatory networks with stochastic dynamics. J. Comput. Biol. 13(9), 1630–1639 (2006)

    Article  MathSciNet  Google Scholar 

  58. C. Rohr, W. Marwan, M. Heiner, Snoopy – a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)

    Article  Google Scholar 

  59. A. Saadatpour, I. Albert, R. Albert, Attractor analysis of asynchronous Boolean models of signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)

    Article  MathSciNet  Google Scholar 

  60. A. Sackmann, M. Heiner, I. Koch, Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7(1), 482 (2006)

    Google Scholar 

  61. I. Shmulevich, E.R. Dougherty, Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks (SIAM, Philadelphia, 2010)

    Book  Google Scholar 

  62. I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  63. B. Stigler, D. Camacho, A. Martins, W. Sha, E.S. Dimitrova, P. Vera-Licona, V. Shulaev, P. Mendes, R. Laubenbacher, Reverse engineering a yeast oxidative stress response network. Under review (2013)

    Google Scholar 

  64. S. Teraguchi, Y. Kumagai, A. Vandenbon, S. Akira, D.M. Standley, Stochastic binary modeling of cells in continuous time as an alternative to biochemical reaction equations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt 1), 062903 (2011)

    Google Scholar 

  65. D. Thieffry, R. Thomas, Qualitative analysis of gene networks. Pac. Symp. Biocomput. 3, 77–88 (1998)

    Google Scholar 

  66. R. Thomas, Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153, 1–23 (1991)

    Article  Google Scholar 

  67. T. Toulouse, P. Ao, I. Shmulevich, S. Kauffman, Noise in a small genetic circuit that undergoes bifurcation. Complexity 11(1), 45–51 (2005)

    Article  MathSciNet  Google Scholar 

  68. A. Veliz-Cuba, Reduction of Boolean network models. J. Theor. Biol. 289, 167–172 (2011)

    Article  MathSciNet  Google Scholar 

  69. A. Veliz-Cuba, An algebraic approach to reverse engineering finite dynamical systems arising from biology. SIAM J. Appl. Dyn. Syst. 11(1), 31–48 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Veliz-Cuba, R. Laubenbacher, On the computation of fixed points in Boolean networks. J. Appl. Math. Comput. accepted (2011)

    Google Scholar 

  71. A. Veliz-Cuba, B. Stigler, Boolean models can explain bistability in the lac operon. J. Comput. Biol. 18(6), 783–794 (2011)

    Article  MathSciNet  Google Scholar 

  72. A. Veliz-Cuba, A.S. Jarrah, R. Laubenbacher, Polynomial algebra of discrete models in systems biology. Bioinformatics 26(13), 1637–1643 (2010)

    Article  Google Scholar 

  73. A. Veliz-Cuba, J. Arthur, L. Hochstetler, V. Klomps, E. Korpi, On the relationship of steady states of continuous and discrete models arising from biology. Bull. Math. Biol. accepted (2012)

    Google Scholar 

  74. A. Veliz-Cuba, K. Buschur, R. Hamershock, A. Kniss, E. Wolff, R. Laubenbacher, AND-NOT logic framework for steady state analysis of Boolean network models (2012). arXiv:1211.5633

    Google Scholar 

  75. M. Vignes, J. Vandel, D. Allouche, N. Ramadan-Alban, C. Cierco-Ayrolles, T. Schiex, B. Mangin, S. de Givry, Gene regulatory network reconstruction using Bayesian networks, the Dantzig selector, the Lasso and their meta-analysis. PLoS ONE 6(12), e29165 (2011)

    Google Scholar 

  76. C.H. Waddington, Canalisation of development and the inheritance of acquired characters. Nature 150, 563–564 (1942)

    Article  Google Scholar 

  77. H. Wang, L. Qian, E. Dougherty, Inference of gene regulatory networks using S-system: a unified approach. IET Syst. Biol. 4(2), 145–156 (2010)

    Article  Google Scholar 

  78. D. Wilkinson, Stochastic Modeling for Systems Biology (Chapman and Hall/CRC, Boca Raton, 2006)

    Google Scholar 

  79. K. Willadsen, J. Wiles, Robustness and state-space structure of Boolean gene regulatory models. J. Theor. Biol. 249(4), 749–765 (2007)

    Article  MathSciNet  Google Scholar 

  80. P. Zoppoli, S. Morganella, M. Ceccarelli, TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 11(1), 154 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Laubenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laubenbacher, R., Hinkelmann, F., Murrugarra, D., Veliz-Cuba, A. (2014). Algebraic Models and Their Use in Systems Biology. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics