Skip to main content

Invariants of Graphs Modeling Nucleotide Rearrangements

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

Nucleotide rearrangements occur in many biological systems. These genome reorganisations are especially widespread in ciliates, making these protozoans an attractive model system for experimental, computational, and theoretical studies. Rearrangements of ciliate chromosomes are modeled by the so-called assembly graphs. Edges of these graphs represent double-stranded DNA molecules, while vertices correspond to DNA recombination sites. This work is an expository article in which we discuss topological and combinatorial invariants of assembly graphs. The topological invariant, called the genus range, gives information about possible spatial arrangement of the corresponding DNA molecule. The combinatorial invariant, called the assembly polynomial, is closely related to the possible products of the rearrangement modeled by the assembly graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Locally at each non-rigid vertex there are two possible connectivities of the boundary components of a ribbon surface

    and

    . However, since each squared perturbation represents a rigid vertex of \(\mathcal{T}_{n}\), only the cases where all four vertices of a squared perturbation have the same connectivity of the boundary components are considered.

References

  1. N.M. Alder, B.I. Rogozin, M.L. Iyer, V.G. Glazko, D.M. Cooper, Z. Pancer, Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 23, 1970–1973 (2005)

    Article  Google Scholar 

  2. A. Angeleska, N. Jonoska, M. Saito, L.F. Landweber, RNA-guided DNA assembly. J. Theor. Biol. 248, 706–720 (2007)

    MathSciNet  Google Scholar 

  3. A. Angeleska, N. Jonoska, M. Saito, DNA recombination through assembly graphs. Discret. Appl. Math. 157, 3020–3037 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Bonen, Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J. 7, 40–46 (1993)

    Google Scholar 

  5. D. Buck, E. Dolzhenko, N. Jonoska, M. Saito, K. Valencia, Genus ranges of 4-regular rigid vertex graphs (2012). (arXiv:1211.4939)

    Google Scholar 

  6. J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito, Four-regular graphs with rigid vertices associated to DNA recombination. Discret. Appl. Math. 161, 1378–1394 (2013). http://dx.doi.org/10.1016/j.dam.2013.01.003

    Google Scholar 

  7. S.V. Chmutov, S.K. Lando, Mutant knots and intersection graphs. Algebra Geome Topol. 7, 1579–1598 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Dolzhenko, E.C. Swart, A.D. Goldman, L.F. Landweber, STAGR: software to annotate genome rearrangement, extended abstract, ISMB/ECCB, 2011. http://www.iscb.org/uploaded/css/86/20246.pdf

  9. R.A. Duke, The genus, regional number, and Betti number of a graph. Can. J. Math. 18, 817–822 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  10. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebra. Bull. Am. Math. Soc.(N.S.) 12, 103–111 (1985)

    Google Scholar 

  11. N. Jonoska, M. Saito, Boundary components of thickened graphs. Lect. Notes Comput. Sci. 2340, 70–81 (2002)

    Article  MathSciNet  Google Scholar 

  12. N. Jonoska, N.C. Seeman, G. Wu, On existence of reporter strands in DNA-based graph structures. Theor. Comput. Sci. 410, 1448–1460 (2002)

    Article  MathSciNet  Google Scholar 

  13. W. Marande, G. Burger, Mitochondrial DNA as a genomic jigsaw puzzle. Science 19, 415 (2007)

    Article  Google Scholar 

  14. B. Mohar, C. Thomassen, Graphs on Surfaces (The Johns Hopkins University Press, Baltimore, 2001)

    MATH  Google Scholar 

  15. D.M. Prescott, Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat. Rev. Genet. 1, 191–198 (2000)

    Article  Google Scholar 

  16. J.P. Stephens, D.C. Greenman, B. Fu, F. Yang, G.R. Bignell, Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011)

    Article  Google Scholar 

  17. W.T. Tutte, Graph-polynomials. Adv. Appl. Math. 32(1–2), 5–9 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Valencia, Topological investigation of bacterial site-specific recombination and genome differentiation in ciliates. Ph.D. Dissertation, Department of Mathematics, Imperial College London, 2013

    Google Scholar 

  19. J.W.T. Youngs, Minimal imbeddings and the genus of a graph. J. Math. Mech. 12(2), 303–315 (1963)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank F. Din-Houn Lau and Kylash Rajendran, Erica Flapan, Mauro Mauricio and Julian Gibbons for insightful discussions. We are greatful to Natasha Jonoska and Masahico Saito for many useful suggestions and help with preparing the manuscript. ED has been supported by the NSF grants DMS-0900671, KV is supported by EP/G0395851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Dolzhenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dolzhenko, E., Valencia, K. (2014). Invariants of Graphs Modeling Nucleotide Rearrangements. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics