Advertisement

Evaluating the Interest of Revamping Past Search Results

  • Claudio Gutiérrez-Soto
  • Gilles Hubert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)

Abstract

In this paper we present two contributions: a method to construct simulated document collections suitable for information retrieval evaluation as well as an approach of information retrieval using past queries and based on result combination. Exponential and Zipf distribution as well as Bradford’s law are applied to construct simulated document collections suitable for information retrieval evaluation. Experiments comparing a traditional retrieval approach with our approach based on past queries using past queries show encouraging improvements using our approach.

Keywords

Information Retrieval Relevant Document Information Retrieval System Relevance Judgment Similar Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzopardi, L., de Rijke, M., Balog, K.: Building simulated queries for known-item topics: an analysis using six european languages. In: Proceedings of the 30th annual international ACM SIGIR, pp. 455–462. ACM, New York (2007)Google Scholar
  2. 2.
    Baeza-Yates, R., Castillo, C., Marin, M., Rodriguez, A.: Crawling a country: better strategies than breadth-first for web page ordering. Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, WWW 2005, pp. 864–872. ACM, New York (2005)Google Scholar
  3. 3.
    Bigot, A., Chrisment, C., Dkaki, T., Hubert, G., Mothe, J.: Fusing different information retrieval systems according to query-topics: a study based on correlation in information retrieval systems and trec topics. Inf. Retr. 14(6), 617–648 (2011)CrossRefGoogle Scholar
  4. 4.
    Cetintas, S., Si, L., Yuan, H.: Using past queries for resource selection in distributed information retrieval. Tech. Rep. 1743, Department of Computer Science, Purdue University (2011), http://docs.lib.purdue.edu/cstech/1743
  5. 5.
    Cleverdon, C.W.: The evaluation of systems used in information retrieval (1958: Washington). In: Proceedings of the International Conference on Scientific Information - Two Volumes, pp. 687–698 (1959)Google Scholar
  6. 6.
    Dang, V., Croft, B.W.: Query reformulation using anchor text. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 41–50. ACM, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Rec. 39(1), 41–47 (2010)CrossRefGoogle Scholar
  8. 8.
    Garfield, E.: Bradford’s Law and Related Statistical Patterns. Essays of an Information Scientist 4(19), 476–483 (1980), http://www.garfield.library.upenn.edu/essays/v4p476y1979-80.pdf Google Scholar
  9. 9.
    Heaps, H.S.: Information Retrieval: Computational and Theoretical Aspects. Academic Press, Inc., Orlando (1978)zbMATHGoogle Scholar
  10. 10.
    Huurnink, B., Hofmann, K., de Rijke, M., Bron, M.: Validating query simulators: An experiment using commercial searches and purchases. In: Agosti, M., Ferro, N., Peters, C., de Rijke, M., Smeaton, A. (eds.) CLEF 2010. LNCS, vol. 6360, pp. 40–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Klink, S.: Improving document transformation techniques with collaborative learned term-based concepts. In: Dengel, A.R., Junker, M., Weisbecker, A. (eds.) Adaptive READ Research Project. LNCS, vol. 2956, pp. 281–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (July 2008)Google Scholar
  13. 13.
    Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R., Scherson, I.D.: Sync/async parallel search for the efficient design and construction of web search engines. Parallel Comput. 36(4), 153–168 (2010)zbMATHCrossRefGoogle Scholar
  14. 14.
    Silva de Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word searching on compressed text. ACM Trans. Inf. Syst. 18(2), 113–139 (2000)CrossRefGoogle Scholar
  15. 15.
    Navarro, G., De Moura, E.S., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding compression to block addressing inverted indexes. Inf. Retr. 3(1), 49–77 (2000)CrossRefGoogle Scholar
  16. 16.
    Raghavan, V.V., Sever, H.: On the reuse of past optimal queries. In: Proceedings of the 18th Annual International ACM SIGIR Conference, pp. 344–350. ACM, New York (1995)Google Scholar
  17. 17.
    Sanderson, M., Croft, W.: The history of information retrieval research. Proceedings of the IEEE 100(Special Centennial Issue), 1444–1451 (2012)CrossRefGoogle Scholar
  18. 18.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference, pp. 43–50. ACM, New York (2005)Google Scholar
  19. 19.
    Shen, X., Zhai, C.X.: Exploiting query history for document ranking in interactive information retrieval. In: Proceedings of the 26th Annual International ACM SIGIR Conference, pp. 377–378. ACM, New York (2003)Google Scholar
  20. 20.
    Tague, J.M., Nelson, M.J.: Simulation of user judgments in bibliographic retrieval systems. In: Proceedings of the 4th Annual International ACM SIGIR Conference, pp. 66–71. ACM, New York (1981)Google Scholar
  21. 21.
    Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval. MIT Press, Cambridge (2005)Google Scholar
  22. 22.
    Xu, R., Wunsch, D.I.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  23. 23.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading (1949)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudio Gutiérrez-Soto
    • 1
    • 2
  • Gilles Hubert
    • 1
  1. 1.IRIT UMR 5505 CNRSUniversité de ToulouseToulouse cedex 9France
  2. 2.Departamento de Sistemas de InformaciónUniversidad del Bío-BíoChile

Personalised recommendations