Advertisement

Analysis of Clinical Documents to Enable Semantic Interoperability

  • Barbara Franz
  • Andreas Schuler
  • Emmanuel Helm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)

Abstract

While there is a wealth of information available for each patient in an Electronic Health Record (EHR), information is not optimally organized for efficient use in patient care and there is still a large gap to achieve semantic and process interoperability. Current researches focus either on fully structured or non-structured clinical documents. A pre-analysis of 1000 real-world clinical documents showed, that most clinical documents are provided in a semi-structured way as level 2 HL7 Clinical Document Architecture (CDA) documents. Thus, an analysis framework is presented which also uses this semi-structure in combination with underlying models and metadata provided by the exchanging infrastructures, allowing summarization, comparison and integration of clinical information. The approach was tested using an IHE compliant EHR system. The analysis framework offers good response times and high accuracy levels. However, there is room for improvement considering processing of non-structured text and non-CDA documents.

Keywords

Semantic interoperability Electronic Health Record Clinical Document Architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaudhry, B., et al.: Systematic Review: Impact of Health Information Technology on Quality, Efficiency, and Costs of Medical Care Ann. Intern. Med. 144(10), 742–752 (2006)Google Scholar
  2. 2.
    Thakkar, M., Davis, D.: Risks, Barriers, and Benefits of EHR Systems: A Comparative Study Based on Size of Hospital. Perspect Health Inf. Manag. 3, 5 (2006)Google Scholar
  3. 3.
    Green, M.L., Ciampi, M.A., Ellis, P.J.: Residents’ medical information needs in clinic: are they being met? Am. J. Med. 109, 218–223 (2000)CrossRefGoogle Scholar
  4. 4.
    Barnett, G.O., et al.: Overcoming Information Overload: An Information System for the Primary Care Physician. In: Fieschi, M., Coiera, E., Li, Y.C.J. (eds.) Proceedings from the Medinfo 2004 World Congress on Medical Informatics. Studies in Health Technology and Informatics, vol. 107, pp. 273–276. AMIA, IOS Press (2004)Google Scholar
  5. 5.
    Health Level Seven: HL7. Health Level Seven (2013), http://www.hl7.org
  6. 6.
    Heitmann, K., Gobrecht, K-H.: HL7 Kommunikationsstandards für das Gesundheitswesen. Ein Überblick, HL7 Benutzergruppe in Deutschland, LUP, Köln (2009) Google Scholar
  7. 7.
    IHE International: IHE International: Integrating the Healthcare Enterprise (2013), http://www.ihe.net
  8. 8.
    Bernal, J., Lopez, D., Blobel, B.: Architectural approach for semantic EHR systems development based on Detailed Clinical Models Stud Health Technol. Inform. (2012) Google Scholar
  9. 9.
    Spronk, R.: CDA. Clinical Document Architecture (2007), http://hl7book.net
  10. 10.
    IHE International: IHE Information Technology Infrastructure – Technical Framework, Volume 1 Integration Profiles (2013), http://www.ihe.net/Technical_Framework/index.cfm#IT
  11. 11.
    Blobel, B.G., Engel, K., Pharow, P.: Semantic interoperability–HL7 Version 3 compared to advanced architecture standards. Methods Inf. Med. 45(4), 343–353 (2006)Google Scholar
  12. 12.
    Benson, T.: Principles of Health Interoperability HL7 and SNOMED, HI. Springer, London (2010), doi:10.1007/978-1-84882-803-2_9Google Scholar
  13. 13.
    ISO: EN13606 Health informatics - Electronic health record communication - Part 1: Reference model (ISO 13606-1:2008); English version EN ISO 13606-1:2012 (2012) Google Scholar
  14. 14.
    HL7 International: HL7 Version 3 Standard: Data Types - Abstract Specification, Release 2 (2012), http://www.hl7.org
  15. 15.
    Schadow, G., McDonald, C.J.: The Unified Code for Units of Measure, Regenstrief Institute (2009), http://unitsofmeasure.org/ucum.html
  16. 16.
  17. 17.
    WHO. International Classification of Diseases (2013), http://www.who.int/classifications/icd/en/
  18. 18.
    NIH: Unified Medical Language System (2013), http://www.nlm.nih.gov/research/umls/
  19. 19.
    Health Level Seven: HL7 Reference Information Model (2012), http://www.hl7.org/implement/standards/rim.cfm
  20. 20.
    Dolin, R., et al.: HL7 Clinical Document Architecture, Release 2. J. Am. Med. Inform. Assoc. 13, 30–39 (2006)CrossRefGoogle Scholar
  21. 21.
    Franz, B., Mayr, H.: Providing Semantic Interoperability for Integrated Healthcare Using a Model Transformation Approach. In: Proceedings EMSS 2011, Rome, Italy (2011)Google Scholar
  22. 22.
    Friedmann-Hill, E.: Jess® The Rule Engine for the JavaTM Platform, Version 7.1p2, Sandia National Laboratories (November 2008) Google Scholar
  23. 23.
    Boley, H., et. al.: Schema Specification of Deliberation RuleML, Version 1.0 (April 2012) Google Scholar
  24. 24.
    OpenHealthTools, 2011. OpenHealthTools (2012), http://www.openhealthtools.org
  25. 25.
    UMLS Unified Medical Language System, http://www.nlm.nih.gov/research/umls/ (visited on April 06, 2012)
  26. 26.
    Denecke, K.: Semantic structuring of and information extraction from medical documents using the UMLS. Methods Inf. Med. 47(5), 425–434 (2008)Google Scholar
  27. 27.
    Paizoni, T.: A Rule-Based Summarization Approach for CDA Documents in an IHE compliant System, Hagenberg, Austria (2012)Google Scholar
  28. 28.
    Sunita, S.: Foundations and Trends in Databases – Information Extraction, vol. 1. 3. Now Publishers (2008)Google Scholar
  29. 29.
    Franz, B., Lehner, M., Mayr, H., Mayr, H.: e-Care – IHE-Compliant Patient-Data Exchange in Order to Enable Home & Mobile Care of Elderly People Within an e-Care Affinity Domain. In: Proceedings 6th International Conference on Information Technology: New Generations, Las Vegas, April 25-27 (2009)Google Scholar
  30. 30.
    Franz, B., Schuler, A., Buchmayr, M.: Context-enriched personal health monitoring. In: Proceedings AAL Kongress 2013, Berlin, Germany (2013)Google Scholar
  31. 31.
    Stenzhorn, H., Pacheco, E.J., Nohama, P., Schulz, S.: Automatic Mapping of Clinical Documentation to SNOMED CT. In: MIE 2009, pp. 228–232 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Barbara Franz
    • 1
  • Andreas Schuler
    • 1
  • Emmanuel Helm
    • 1
  1. 1.University of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations