Advertisement

Exploring Trust to Rank Reputation in Microblogging

  • Leila Weitzel
  • José Palazzo Moreira de Oliveira
  • Paulo Quaresma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)

Abstract

The Web 2.0 is the top manifestation of User-Generated Content systems, such as reviews, tags, comments, tweets etc. Due to their free nature such systems contain information of different quality levels. Consequently, it is difficult for users to determine the quality of the information and the reputation of its providers. The quality evaluation is a matter of great concern, especially in medical and healthcare domain. To help the posts quality assessment this paper presents an alternative to measuring reputation based on social interactions. As a test case, we explore the data structure of the Twitter micro blogging service. Our main contribution is to provide a new methodology to Rank Reputation in a network structure based on weighted social interaction. This approach can guide Internet users to encounter authority and trustworthy sources of online health and medical information in Twittershpere. The results show that the rank methodology and the network structure have succeeded in inferring user reputation.

Keywords

Social Network Analysis Twitter Reputation Quality information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boer, M.J., Versteegen, G.J., van Wijhe, M.: ‘Patients’ use of the Internet for pain-related medical information. Patient Education and Counseling 68(1), 86–97 (2007)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.G.: Consumers of e-Health: Patterns of Use and Barriers. Social Science Computer Review 22(2), 242–248 (2004)CrossRefGoogle Scholar
  3. 3.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: Proceedings of the International Conference on Web Search and Web Data Mining, Palo Alto, California, USA (2008)Google Scholar
  4. 4.
    Wasserman, S., Faust, K.: Social network analysis. University Press (1994)Google Scholar
  5. 5.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Book What is Twitter, a Social Network or a News Media?, pp. 591–600. ACM (2010)Google Scholar
  6. 6.
    Cheung, C.M.K., Lee, M.K.O.: A theoretical model of intentional social action in online social networks. Decision Support Systems 49(1), 24–30 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain (2009)Google Scholar
  8. 8.
    Shen, Y., Syu, Y.S., Nguyen, D.T., Thai, M.T.: Maximizing circle of trust in online social networks. In: Book Maximizing Circle of Trust in Online Social Networks, pp. 155–164 (2012)Google Scholar
  9. 9.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Book The Role of Social Networks in Information Diffusion, pp. 519–528 (2012)Google Scholar
  10. 10.
    Bonacich, P.: Some unique properties of eigenvector centrality. Social Networks 29(4), 555–564 (2007)CrossRefGoogle Scholar
  11. 11.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. In: Book The PageRank Citation Ranking: Bringing Order to the Web, Stanford InfoLab (1999)Google Scholar
  12. 12.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc. (1999)Google Scholar
  13. 13.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring User Influence in Twitter: The Million Follower Fallacy. In: Book Measuring User Influence in Twitter: The Million Follower Fallacy. AAAI Press, Menlo Park (2010)Google Scholar
  14. 14.
    Weitzel, L., Quaresma, P., de Oliveira, J.P.M.: Evaluating Quality of Health Information Sources. In: Book Evaluating Quality of Health Information Sources, pp. 655–662. IEExplore (2012)Google Scholar
  15. 15.
    Stvilia, B., Mon, L., Yi, Y.J.: A model for online consumer health information quality. Journal of the American Society for Information Science and Technology 60(9), 1781–1791 (2009)CrossRefGoogle Scholar
  16. 16.
    Shon, J., Musen, M.A.: The low availability of metadata elements for evaluating the quality of medical information on the World Wide Web. In: Proceedings/AMIA.. Annual Symposium. AMIA Symposium, pp. 945–949 (1999)Google Scholar
  17. 17.
    Wang, Y., Liu, Z.: Automatic detecting indicators for quality of health information on the Web. International Journal of Medical Informatics 76(8), 575–582 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leila Weitzel
    • 1
    • 2
  • José Palazzo Moreira de Oliveira
    • 2
  • Paulo Quaresma
    • 3
  1. 1.Federal University of ParáParáBrazil
  2. 2.Federal University of Rio Grande do SulRio Grande do SulBrazil
  3. 3.University of ÉvoraÉvoraPortugal

Personalised recommendations