Advertisement

FOPA: A Final Object Pruning Algorithm to Efficiently Produce Skyline Points

  • Ana Alvarado
  • Oriana Baldizan
  • Marlene Goncalves
  • Maria-Esther Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)

Abstract

We consider the problem of locating the best points in large multidimensional datasets. The goal is to efficiently generate all the points that meet a multi-objective query on data distributed in Vertically Partitioned Tables (VPTs). To compute the skyline on large VPTs, costly joins and comparisons may need to be executed, negatively impacting on the query execution time. We propose a new algorithm named FOPA (Final Object Pruning Algorithm) which is able to efficiently produce the whole set of skyline points and scales up to large datasets. FOPA relies on ordered VPTs, information on the values seen so far, and indices on the VPTs, to prune the space of dominated points and identify the skyline for large datasets in less time than state-of-the-art approaches. Empirically, we study the performance and scalability of FOPA in synthetic data and compare FOPA with existing approaches; our results suggest that FOPA outperforms existing solutions by up to two orders of magnitude.

Keywords

Random Access Answer Completeness Skyline Query Pruning Strategy Skyline Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Boncz, P.A., Harizopoulos, S.: Column oriented database systems. PVLDB 2(2), 1664–1665 (2009)Google Scholar
  2. 2.
    Balke, W.-T., Guntzer, U.: Multi-objective query processing for database systems. In: VLDB, pp. 936–947 (2004)Google Scholar
  3. 3.
    Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bentley, J., Kung, H., Schkolnick, M., Thompson, C.: On the average number of maxima in a set of vectors and applications. Journal of ACM (JACM) (1978)Google Scholar
  5. 5.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington, DC (2001)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Gao, S., Anyanwu, K.: Efficiently evaluating skyline queries on RDF databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 123–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Lian, X.: Dynamic skyline queries in metric spaces. In: EDBT, pp. 333–343 (2008)Google Scholar
  8. 8.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719 (2003)Google Scholar
  9. 9.
    Fuhry, D., Jin, R., Zhang, D.: Efficient skyline computation in metric space. In: EDBT, pp. 1042–1051 (2009)Google Scholar
  10. 10.
    Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector computation. VLDB J. 16(1), 5–28 (2007)CrossRefGoogle Scholar
  11. 11.
    Goncalves, M., Vidal, M.-E.: Reaching the top of the skyline: An efficient indexed algorithm for top-k skyline queries. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 471–485. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: International Conference on Very Large Data Bases (VLDB), pp. 275–286 (2002)Google Scholar
  13. 13.
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Representative Skyline Operator. In: ICDE, pp. 86–95 (2007)Google Scholar
  14. 14.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  15. 15.
    Selke, J., Balke, W.-T.: SkyMap: A trie-based index structure for high-performance skyline query processing. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 350–365. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Sheng, C., Tao, Y.: Worst-case i/o-efficient skyline algorithms. ACM Trans. Database Syst. 37(4), 26 (2012)CrossRefGoogle Scholar
  17. 17.
    Skopal, T., Lokoc, J.: Answering metric skyline queries by pm-tree. In: DATESO, pp. 22–37 (2010)Google Scholar
  18. 18.
    Tan, K., Eng, P., Ooi, B.: Efficient progressive skyline computation. In: VLDB 2001: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 301–310. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  19. 19.
    Vlachou, A., Vazirgiannis, M.: Ranking the sky: Discovering the importance of skyline points through subspace dominance relationships. Data Knowl. Eng. 69(9), 943–964 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Alvarado
    • 1
  • Oriana Baldizan
    • 1
  • Marlene Goncalves
    • 1
  • Maria-Esther Vidal
    • 1
  1. 1.Universidad Simón BolívarVenezuela

Personalised recommendations