Data Value Storage for Compressed Semi-structured Data

  • Brian G. Tripney
  • Isla Ross
  • Francis A. Wilson
  • John N. Wilson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)


Growing user expectations of anywhere, anytime access to information require new types of data representations to be considered. While semi-structured data is a common exchange format, its verbose nature makes files of this type too large to be transferred quickly, especially where only a small part of that data is required by the user. There is consequently a need to develop new models of data storage to support the sharing of small segments of semi-structured data since existing XML compressors require the transfer of the entire compressed structure as a single unit. This paper examines the potential for bisimilarity-based partitioning (i.e. the grouping of items with similar structural patterns) to be combined with dictionary compression methods to produce a data storage model that remains directly accessible for query processing whilst facilitating the sharing of individual data segments. Study of the effects of differing types of bisimilarity upon the storage of data values identified the use of both forwards and backwards bisimilarity as the most promising basis for a dictionary-compressed structure. A query strategy is detailed that takes advantage of the compressed structure to reduce the number of data segments that must be accessed (and therefore transferred) to answer a query. A method to remove redundancy within the data dictionaries is also described and shown to have a positive effect on memory usage.


Data Dictionary Token Size Dictionary Size Semistructured Data Query Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liefke, H., Suciu, D.: XMILL: An Efficient Compressor for XML Data. In: Proc ACM SIGMOD, pp. 153–164 (2000)Google Scholar
  2. 2.
    Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In: Data Compression Conference (DCC 2001), pp. 163–172. IEEE Computer Society (2001)Google Scholar
  3. 3.
    Levene, M., Wood, P.: XML Structure Compression. In: International Workshop on Web Dynamics (2002)Google Scholar
  4. 4.
    Skibinski, P., Grabowski, S., Swacha, J.: Fast Transform for Effective XML Compression. In: Proc CADSM, pp. 323–326 (2007)Google Scholar
  5. 5.
    Tolani, P.M., Haritsa, J.R.: XGRIND: A Query-Friendly XML Compressor. In: ICDE 2002, pp. 225–234 (2002)Google Scholar
  6. 6.
    Min, J.K., Park, M.J., Chung, C.W.: XPRESS: A Queriable Compression for XML Data. In: Proc ACM SIGMOD, pp. 122–133. ACM (2003)Google Scholar
  7. 7.
    Skibiński, P., Swacha, J.: Combining efficient XML compression with query processing. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 330–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, I., Pugliese, A.: Efficient query evaluation over compressed XML data. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 200–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cheng, J., Ng, W.: XQzip: Querying compressed XML using structural indexing. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 219–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ng, W., Lam, W.Y., Wood, P.T., Levene, M.: XCQ: A queriable XML compression system. Knowledge and Information Systems 10(4), 421–452 (2006)CrossRefGoogle Scholar
  11. 11.
    Wong, R.K., Lam, F., Shui, W.M.: Querying and maintaining a compact XML storage. In: Proc WWW Conference, pp. 1073–1082. ACM (2007)Google Scholar
  12. 12.
    Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local Similarity for Indexing Paths in Graph-Structured Data. In: Proc ICDE 2002, pp. 129–140 (2002)Google Scholar
  13. 13.
    Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: Proc 29th VLDB, pp. 141–152 (2003)Google Scholar
  14. 14.
    Schroeder, R., Mello, R., Hara, C.: Affinity-based xml fragmentation. In: 15th WebDB (2012)Google Scholar
  15. 15.
    Alghamdi, N., Rahayu, W., Pardede, E.: Object-based methodology for xml data partitioning (oxdp). In: Proc IEEE AINA, pp. 307–315. IEEE (2011)Google Scholar
  16. 16.
    Marian, A., Siméon, J.: Projecting xml documents. In: Proc 29th VLDB, pp. 213–224. VLDB Endowment (2003)Google Scholar
  17. 17.
    Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Partitioning xml documents for iterative queries. In: Proc 16th IDEAS, pp. 51–60. ACM (2012)Google Scholar
  18. 18.
    Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In: VLDB 1997, pp. 436–445 (1997)Google Scholar
  19. 19.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann (1999)Google Scholar
  20. 20.
    Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering Indexes for Branching Path Queries. In: Proc ACM SIGMOD, pp. 133–144. ACM (2002)Google Scholar
  21. 21.
    Wilson, J., Gourlay, R., Japp, R., Neumuller, M.: Extracting partition statistics from semistructured data. In: Proc 16th DEXA, pp. 497–501. IEEE (2006)Google Scholar
  22. 22.
    Dietz, P.F.: Maintaining Order in a Linked List. In: Proc 14th ACM STOC, pp. 122–127. ACM (1982)Google Scholar
  23. 23.
    Tripney, B., Foley, C., Gourlay, R., Wilson, J.N.: Sharing large data collections between mobile peers. In: Proc 7th MoMM, pp. 321–325. ACM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brian G. Tripney
    • 1
  • Isla Ross
    • 1
  • Francis A. Wilson
    • 2
  • John N. Wilson
    • 1
  1. 1.Department of Computer & Information SciencesUniversity of StrathclydeGlasgowUK
  2. 2.Graduate School of BusinessUniversity of the South PacificSuvaFiji

Personalised recommendations