Comparison Queries for Uncertain Graphs

  • Denis Dimitrov
  • Lisa Singh
  • Janet Mann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8056)


Extending graph models to incorporate uncertainty is important for many applications, including disease transmission networks, where edges may have a disease transmission probability associated with them, and social networks, where nodes may have an existence probability associated with them. Analysts need tools that support analysis and comparison of these uncertain graphs. To this end, we have developed a prototype SQL-like graph query language with emphasis on operators for uncertain graph comparison. In order to facilitate adding new operators and to enable developers to use existing operators as building blocks for more complex ones, we have implemented a query engine with an extensible system architecture. The utility of our query language and operators in analyzing uncertain graph data is illustrated using two real world data sets: a dolphin observation network and a citation network. Our approach serves as an example for developing simple query languages that enables users to write their own ad-hoc uncertain graph comparison queries without extensive programming knowledge.


graph query language comparison queries uncertain graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arangodb graph database,
  2. 2.
  3. 3.
    Gremlin language for graph traversal and manipulation,
  4. 4.
    Neo4j graph database,
  5. 5.
  6. 6.
    Orientdb document-graph dbms,
  7. 7.
  8. 8.
    Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.: The Lorel query language for semistructured data. International Journal on Digital Libraries 1, 68–88 (1997)CrossRefGoogle Scholar
  9. 9.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computer Surveys 40, 1:1–1:39 (2008)Google Scholar
  10. 10.
    Cesario, N., Pang, A., Singh, L.: Visualizing node attribute uncertainty in graphs. In: SPIE VDA (2011)Google Scholar
  11. 11.
    Fortin, S.: The graph isomorphism problem. Technical report (1996)Google Scholar
  12. 12.
    Güting, R.H.: GraphDB: Modeling and querying graphs in databases. In: VLDB (1994)Google Scholar
  13. 13.
    He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for graph databases. In: ACM SIGMOD (2008)Google Scholar
  14. 14.
    Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain graphs. In: ACM SIGKDD (2011)Google Scholar
  15. 15.
    Jin, R., Liu, L., Ding, B., Wang, H.: Distance-constraint reachability computation in uncertain graphs. Proc. VLDB Endow. 4(9), 551–562 (2011)Google Scholar
  16. 16.
    Koch, C.: MayBMS: A system for managing large uncertain and probabilistic databases. In: Managing and Mining Uncertain Data. Springer (2009)Google Scholar
  17. 17.
    Mann, J., Team, S.B.R.: Shark bay dolphin project (2011),
  18. 18.
    Papapetrou, O., Ioannou, E., Skoutas, D.: Efficient discovery of frequent subgraph patterns in uncertain graph databases. In: EDBT/ICDT (2011)Google Scholar
  19. 19.
    Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain graphs. Proc. VLDB Endow. 3, 997–1008 (2010)Google Scholar
  20. 20.
    PrudHommeaux, E., Seaborne, A.: Sparql query language for rdf. W3C Recommendation 15 (2008)Google Scholar
  21. 21.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3), 93–106 (2008)Google Scholar
  23. 23.
    Sharara, H., Sopan, A., Namata, G., Getoor, L., Singh, L.: G-PARE: A visual analytic tool for comparative analysis of uncertain graphs. In: IEEE VAST (2011)Google Scholar
  24. 24.
    Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph searching. In: ACM PODS (2002)Google Scholar
  25. 25.
    Singh, L., Beard, M., Getoor, L., Blake, M.B.: Visual mining of multi-modal social networks at different abstraction levels. In: Information Visualization (2007)Google Scholar
  26. 26.
    Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S., Shah, R.: Orion 2.0: native support for uncertain data. In: ACM SIGMOD (2008)Google Scholar
  27. 27.
    Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Managing and Mining Uncertain Data. Springer (2009)Google Scholar
  28. 28.
    Yuan, Y., Chen, L., Wang, G.: Efficiently answering probability threshold-based shortest path queries over uncertain graphs. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 155–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Zhou, H., Shaverdian, A.A., Jagadish, H.V., Michailidis, G.: Querying graphs with uncertain predicates. In: ACM Workshop on Mining and Learning with Graphs (2010)Google Scholar
  30. 30.
    Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph databases. In: EDBT (2012)Google Scholar
  31. 31.
    Zou, Z., Gao, H., Li, J.: Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics. In: ACM KDD (2010)Google Scholar
  32. 32.
    Zou, Z., Li, J., Gao, H., Zhang, S.: Finding top-k maximal cliques in an uncertain graph. In: IEEE ICDE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Denis Dimitrov
    • 1
  • Lisa Singh
    • 1
  • Janet Mann
    • 1
  1. 1.Georgetown UniversityWashington, DCUSA

Personalised recommendations