Skip to main content
  • 2235 Accesses

Abstract

In recent years, many different formulations using Lagrange (nodal) as well as Nédélec (edge) finite elements for the numerical computation of Maxwell’s equations have been published, e.g., [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Biró, K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989)

    Article  Google Scholar 

  2. Y. Kawase, O. Miyatani, T. Yamaguchi, Numerical analysis of dynamic characteristics of electromagnets using 3-d finite element method with edge elements. IEEE Trans. Magn. 30(5), 3248–3251 (1994)

    Article  Google Scholar 

  3. D. Arnold, R. Falk, R. Winther, Multigrid in H(div) and H(curl). NUMEM 85, 197–218 (2000)

    MATH  MathSciNet  Google Scholar 

  4. R. Hiptmair, Multigrid method for Maxwell’s equations. SIAJN 36(1), 204–225 (1999)

    MathSciNet  Google Scholar 

  5. M. Schinnerl, J. Schöberl, M. Kaltenbacher, Nested multigrid methods for the fast numerical computation of 3D magnetic fields. IEEE Trans. Magn. 36(4), 1557–1560 (2000)

    Article  Google Scholar 

  6. W.L. Briggs, A Multigrid Tutorial, SIAM, 1987

    Google Scholar 

  7. U. Rüde, Mathematical and computational techniques for multilevel adaptive methods, (SIAM, 1993)

    Google Scholar 

  8. J.W. Ruge, K. Stüben, In Algebraic Multigrid (AMG), Multigrid Methods, Frontiers in Applied Mathematics, ed. by S. McCormick (SIAM, Philadelphia, 1986), pp. 73–130

    Google Scholar 

  9. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publication, Company, 1996)

    MATH  Google Scholar 

  10. D. Braess, Finite Elemente (Springer, Berlin, 2003). (3. korregierte Auflage)

    Book  MATH  Google Scholar 

  11. W. Hackbusch, Multigrid Methods and Application (Springer, Berlin, New York, 1985)

    Book  Google Scholar 

  12. M. Jung, U. Langer, A. Meyer, W. Queck, M. Schneider, Multigrid Preconditioners and their Application. In: Proceedings of the 3rd GDR Multigrid Seminar held at Biesenthal, Karl-Weierstraß-Institut für Mathematik, pp. 11–52, May (1989)

    Google Scholar 

  13. J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. no. 1, 41–52, (1997)

    Google Scholar 

  14. T. Nakata, N. Takahashi, H. Morishige, J.L. Coulomb, C. Sabonnadiere, Analysis of 3D Static Force Problem. In: Proceedings of the TEAM Workshop on Computation of Applied Electromagnetics in Materials, pp. 73–79, (1993)

    Google Scholar 

  15. B. Heise, Mehrgitter-Newton-Verfahren zur Berechnung nichtlinearer magnetischer Felder, Ph.D. thesis, TU Chemnitz, 1994

    Google Scholar 

  16. K. Fujiwara, T. Nakata, H. Ohashi, Improvement for convergence characteristic of ICCG method for the A-\(\Phi \) method using edge elements. IEEE Trans. Magn. 32(3), 804–807 (1996)

    Article  Google Scholar 

  17. D. Braess, Towards algebraic multigrid for elliptic problems of second order. COMPU 55, 379–393 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Kickinger, U. Langer, A note on the global extraction element-by-element method. ZAMM, no. 78, 965–966 (1998)

    Google Scholar 

  19. S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations. Reihe C—Technik und Naturwissenschaften, no. 36, Universitätsverlag Rudolf Trauner, (2001)

    Google Scholar 

  20. P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. COMPU 56, 179–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Brandt, Algebraic multigrid theory: The symmetric case. APPMC 19, 23–56 (1986)

    MATH  Google Scholar 

  22. M. Kaltenbacher, H. Landes, S. Reitzinger, R. Peipp, 3D simulation of electrostatic-mechanical transducers using algebraic multigrid. IEEE Trans. Magn. 38(2), 985–988 (2002)

    Article  Google Scholar 

  23. M. Kaltenbacher, S. Reitzinger, Algebraic Multigrid for Solving Electromechanical Problems. Multigrid Methods VI, Springer, Lecture Notes in Computational Science and Engineering, (1999)

    Google Scholar 

  24. M. Kaltenbacher, S. Reitzinger, Nonlinear 3D magnetic field computations using Lagrange FE-functions and algebraic multigrid. IEEE Trans. Magn. 38(2), 1489–1496 (2002)

    Article  Google Scholar 

  25. M. Kaltenbacher, S. Reitzinger, J. Schöberl, Algebraic multigrid method for solving 3D nonlinear electrostatic and magnetostatic field problems. IEEE Trans. Magn. 36(4), 1561–1564 (2000)

    Article  Google Scholar 

  26. S. Reitzinger, M. Kaltenbacher, Algebraic multigrid methods for magnetostatic field problems. IEEE Trans. Magn. 38(2), 477–480 (2002)

    Article  Google Scholar 

  27. S. Reitzinger, J. Schöberl, Algebraic multigrid for edge elements. Numer. Linear Algebra Appl. 9, 223–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid for Complex Symmetric Matrices. Numerical Study, Technical Report 02–01, Johannes Kepler University Linz, SFB: Numerical and Symbolic Scientific Computing, (2002)

    Google Scholar 

  29. M. Rausch, M. Gebhardt, M. Kaltenbacher, H. Landes, Magnetomechanical field computation of a clinical magnetic resonance imaging (MRI) scanner. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 22(3), 576–588 (2003)

    Article  Google Scholar 

  30. G. Haase, M. Kuhn, U. Langer, S. Reitzinger, J. Schöberl, Parallel Maxwell solvers, scientific computing in electrical engineering. U. Van Rienen, M. Günther, and D. Hecht, (eds.), Lecture Notes in Computational Science and Engineering, vol. 18, Springer, (2000)

    Google Scholar 

  31. G. Haase, M. Kuhn, S. Reitzinger, Parallel AMG on distributed memory computers. SIAM J. Sci. Comput. 24(2), 410–427 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)

    Article  MATH  Google Scholar 

  33. O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  Google Scholar 

  34. O. Schenk, K. Gärtner, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)

    MathSciNet  Google Scholar 

  35. A. Kameari, Improvement of ICCG convergence for thin elements in magnetic field analyses using the finite-element method. IEEE Trans. Magn. 44(6), 178–1181 (2008)

    Google Scholar 

  36. Ch. Chen, O. Bíró, Geometric multigrid with plane smoothing for thin elements in 3-D magnetic fields calculation. IEEE Trans. Magn. 48(2), 443–446 (2012)

    Article  Google Scholar 

  37. A. Hauck, M. Ertl, J. Schöberl, M. Kaltenbacher, Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL 32(5), 1581–1595 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kaltenbacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaltenbacher, M. (2015). Algebraic Solvers. In: Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40170-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40170-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40169-5

  • Online ISBN: 978-3-642-40170-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics