Skip to main content

Efficient Sampling of Non-strict Turnstile Data Streams

  • Conference paper
Fundamentals of Computation Theory (FCT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Included in the following conference series:

Abstract

We study the problem of generating a large sample from a data stream of elements (i,v), where the sample consists of pairs (i,C i ) for C i  = ∑ (i,v) ∈ stream v. We consider strict turnstile streams and general non-strict turnstile streams, in which C i may be negative. Our sample is useful for approximating both forward and inverse distribution statistics, within an additive error ε and provable success probability 1 − δ.

Our sampling method improves by an order of magnitude the known processing time of each stream element, a crucial factor in data stream applications, thereby providing a feasible solution to the problem. For example, for a sample of size O(ε − 2 log(1/δ)) in non-strict streams, our solution requires O((loglog(1/ε))2 + (loglog(1/δ)) 2) operations per stream element, whereas the best previous solution requires O(ε − 2 log2(1/δ)) evaluations of a fully independent hash function per element.

We achieve this improvement by constructing an efficient K-elements recovery structure from which K elements can be extracted with probability 1 − δ. Our structure enables our sampling algorithm to run on distributed systems and extract statistics on the difference between streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, E., Cormode, G., Duffield, N.G.: Don’t let the negatives bring you down: sampling from streams of signed updates. In: SIGMETRICS, pp. 343–354 (2012)

    Google Scholar 

  2. Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams using hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng. 15(3), 529–540 (2003)

    Article  Google Scholar 

  3. Cormode, G., Muthukrishnan, S., Rozenbaum, I.: Summarizing and mining inverse distributions on data streams via dynamic inverse sampling. In: VLDB, pp. 25–36 (2005)

    Google Scholar 

  4. Datar, M., Muthukrishnan, S.M.: Estimating rarity and similarity over data stream windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Dubhashi, D.P., Ranjan, D.: Balls and bins: A study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and applications. In: Symposium on Computational Geometry, pp. 142–149 (2005)

    Google Scholar 

  7. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and applications. Int. J. Comput. Geometry Appl. 18(1/2), 3–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganguly, S.: Counting distinct items over update streams. Theor. Comput. Sci. 378(3), 211–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  10. Gemulla, R., Lehner, W., Haas, P.J.: A dip in the reservoir: Maintaining sample synopses of evolving datasets. In: VLDB, pp. 595–606 (2006)

    Google Scholar 

  11. Gemulla, R., Lehner, W., Haas, P.J.: Maintaining bernoulli samples over evolving multisets. In: PODS, pp. 93–102 (2007)

    Google Scholar 

  12. Gibbons, P.B.: Distinct sampling for highly-accurate answers to distinct values queries and event reports. In: VLDB, pp. 541–550 (2001)

    Google Scholar 

  13. Gilbert, A.C., Li, Y., Porat, E., Strauss, M.J.: Approximate sparse recovery: optimizing time and measurements. In: STOC, pp. 475–484 (2010)

    Google Scholar 

  14. Gohberg, I., Olshevsky, V.: Fast algorithms with preprocessing for matrix-vector multiplication problems. J. Complexity 10(4), 411–427 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 792–799. IEEE (2011)

    Google Scholar 

  16. Indyk, P.: A small approximately min-wise independent family of hash functions. J. Algorithms 38(1), 84–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for lp samplers, finding duplicates in streams, and related problems. In: PODS, pp. 49–58 (2011)

    Google Scholar 

  18. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct elements problem. In: PODS, pp. 41–52 (2010)

    Google Scholar 

  19. Karamcheti, V., Geiger, D., Kedem, Z.M., Muthukrishnan, S.: Detecting malicious network traffic using inverse distributions of packet contents. In: MineNet, pp. 165–170 (2005)

    Google Scholar 

  20. Micciancio, D.: Oblivious data structures: Applications to cryptography. In: STOC, pp. 456–464 (1997)

    Google Scholar 

  21. Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error lp-sampling with applications. In: SODA, pp. 1143–1160 (2010)

    Google Scholar 

  22. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and Trends in Theoretical Computer Science 1(2) (2005)

    Google Scholar 

  23. Naor, M., Teague, V.: Anti-persistence: History independent data structures. IACR Cryptology ePrint Archive 2001, 36 (2001)

    Google Scholar 

  24. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM J. Comput. 38(1), 85–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Porat, E., Lipsky, O.: Improved sketching of hamming distance with error correcting. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 173–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Reed, I., Golomb, S.: Polynomial codes over certain finite fields. Joint Society of Industrial and Applied Mathematics Journal 8(2), 300–304 (1960)

    Article  MATH  Google Scholar 

  27. Tao, Y., Lian, X., Papadias, D., Hadjieleftheriou, M.: Random sampling for continuous streams with arbitrary updates. IEEE Trans. Knowl. Data Eng. 19(1), 96–110 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barkay, N., Porat, E., Shalem, B. (2013). Efficient Sampling of Non-strict Turnstile Data Streams. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics