Skip to main content

New Sequential and Parallel Algorithms for Computing the β-Spectrum

  • Conference paper
  • 635 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Abstract

β-skeletons, a prominent member of the neighborhood graph family, have interesting geometric properties and various applications ranging from geographic networks to archeology. This paper focuses on computing the β-spectrum, a labeling of the edges of the Delaunay Triangulation, DT(V), which makes it possible to quickly find the lune-based β-skeleton of V for any query value β ∈ [1, 2]. We consider planar n point sets V with L p metric, 1 < p < ∞. We present a O(n log2 n) time sequential, and a O(log4 n) time parallel β-spectrum labeling. We also show a parallel algorithm, which for a given β ∈ [1,2], finds the lune-based β-skeleton in O(log2 n) time. The parallel algorithms use O(n) processors in the CREW-PRAM model.

This research is supported by the ESF EUROCORES programme EUROGIGA, CRP VORONOI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akl, S.G., Lyons, K.A.: Parallel Computational Geometry. Prentice Hall (1993)

    Google Scholar 

  2. Amenta, N., Bern, M.W., Eppstein, D.: The crust and the β-skeleton: combinatorial curve reconstruction. Graphical Models Image Processing 60/2(2), 125–135 (1998)

    Google Scholar 

  3. Aggarwal, A., O’Dunlaing, C., Yap, C.: Parallel computational geometry. Courant Institute of Mathematical Sciences, New York University, New York (1987)

    Google Scholar 

  4. Atallah, M.J., Goodrich, M.T.: Efficient parallel solutions to some geometric problems. J. Parallel Distrib. Comput. 3, 293–327 (1986)

    Article  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray Shooting in Polygons Using Geodesic Triangulations. Algorithmica 12, 54–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cole, R., Goodrich, M.T.: Optimal parallel algorithms for polygon and point-set problems. Algorithmica 7, 3–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Connor, M., Kumar, P.: Fast Construction of k-Nearest Neighbor Graphs for Point Clouds. IEEE Transactions on Visualization and Computer Graphics (4), 599–608 (2010)

    Google Scholar 

  8. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transaction on Information Theory 29, 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppstein, D.: β-skeletons have unbounded dilation. Computational Geometry 23, 43–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18, 259–278 (1969)

    Article  Google Scholar 

  11. Hurtado, F., Liotta, G., Meijer, H.: Optimal and suboptimal robust algorithms for proximity graphs. In: Computational Geometry, pp. 217–248. North Holland, Amsterdam (1985)

    Google Scholar 

  12. Jaromczyk, J.W., Kowaluk, M.: A note on relative neighborhood graphs. In: Proceedings 3rd Annual Symposium on Computational Geometry, Canada, Waterloo, pp. 233–241. ACM Press (1987)

    Google Scholar 

  13. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  14. Jaromczyk, J.W., Kowaluk, M., Yao, F.: An optimal algorithm for constructing β-skeletons in L p metric (1989) (manuscript)

    Google Scholar 

  15. Kowaluk, M.: Planar β-skeleton via point location in monotone subdivision of subset of lunes. In: EuroCG 2012, Italy, Assisi, pp. 225–227 (2012)

    Google Scholar 

  16. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In: Computational Geometry, pp. 217–248. North Holland, Amsterdam (1985)

    Google Scholar 

  17. Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographical variation research and the clustering of points in plane. Geographical Analysis 12, 205–222 (1984)

    Article  Google Scholar 

  18. Rao, S.V., Mukhopadhyay, A.: Fast algorithms for computing β-skeletons and their relatives. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 374–383. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Supowit, K.J.: The relative neighborhood graph, with an application to minimum spanning trees. Journal of the ACM 30(3), 428–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowaluk, M., Majewska, G. (2013). New Sequential and Parallel Algorithms for Computing the β-Spectrum. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics