Skip to main content

On Independence Domination

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Abstract

Let G be a graph. The independence-domination number γ i(G) is the maximum over all independent sets I in G of the minimal number of vertices needed to dominate I. In this paper we investigate the computational complexity of γ i(G) for graphs in several graph classes related to cographs. We present an exact exponential algorithm. We show that there is a polynomial-time algorithm to compute a maximum independent set in the Cartesian product of two cographs. We prove that independence domination is NP-hard for planar graphs and we present a PTAS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, R., Berger, E., Ziv, R.: A tree version of Kőnig’s theorem. Combinatorica 22, 335–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharoni, R., Szabó, T.: Vizing’s conjecture for chordal graphs. Discrete Mathematics 309, 1766–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  4. Baker, K., Fishburn, P., Roberts, F.: Partial orders of dimension 2. Networks 2, 11–28 (1971)

    Article  MathSciNet  Google Scholar 

  5. Bertossi, A.: Dominating sets for split and bipartite graphs. Information Processing Letters 19, 37–40 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Booth, K., Johnson, J.: Domination in chordal graphs. SIAM Journal on Computing 11, 191–199 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs. Discrete Applied Mathematics 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. Manuscript on ArXiV: 1203.1754v1 (2012)

    Google Scholar 

  11. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Theoretical Computer Science 263, 99–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Domke, G., Fisher, D., Ryan, J., Majumdar, A.: Fractional domination of strong direct products. Discrete Applied Mathematics 50, 89–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farber, M.: Domination, independent domination, and duality in strongly chordal graphs. Discrete Applied Mathematics 7, 115–136 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fisher, D.: Domination, fractional domination, 2-packings, and graph products. SIAM Journal on Discrete Mathematics 7, 493–498 (1984)

    Article  Google Scholar 

  15. Fomin, F., Kratsch, D.: Exact exponential algorithms. EATCS series, Texts in Theoretical Computer Science. Springer (2010)

    Google Scholar 

  16. Golumbic, M.: Algorithmic graph theory and perfect graphs. Annals of Discrete Mathematics, vol. 57. Elsevier (2004)

    Google Scholar 

  17. Gregory, D., Pullman, N.: On a clique covering problem of Orlin. Discrete Mathematics 41, 97–99 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grötschel, M., Lovász, L., Schrijver, A.: Relaxations of vertex packing. Journal of Combinatorial Theory, Series B 40, 330–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Halin, R.: S-functions for graphs. Journal of Geometry 8, 171–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hammack, R., Imrich, W., Klavzar, S.: Handbook of Product Graphs. CRC Press (2011)

    Google Scholar 

  21. Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Imrich, W., Klavžar, S.: Product graphs: structure and recognition. John Wiley & Sons, New York (2000)

    Google Scholar 

  23. Kloks, T.: Treewidth – Computations and Approximations. LNCS, vol. 842. Springer (1994)

    Google Scholar 

  24. Hung, L.-J., Kloks, T.: On some simple widths. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 204–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Kloks, T., Liu, C., Poon, S.: On edge-independent sets (2013) (manuscript)

    Google Scholar 

  26. Kloks, T., Wang, Y.: Advances in graph algorithms (2013) (Manuscript)

    Google Scholar 

  27. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11, 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information Theory IT-25, 1–7 (1979)

    Google Scholar 

  29. Milanič, M.: A note on domination and independence-domination numbers of graphs. Ars Mathematica Contemporanea 6, 89–97 (2013)

    MathSciNet  Google Scholar 

  30. Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oum, S.: Graphs of bounded rank-width, PhD Thesis, Princeton University (2005)

    Google Scholar 

  32. Scheinerman, E., Ullman, D.: Fractional graph theory. Wiley–Interscience, New York (1997)

    MATH  Google Scholar 

  33. Suen, S., Tarr, J.: An improved inequality related to Vizing’s conjecture. The Electronic Journal of Combinatorics 19, 8 (2012)

    MathSciNet  Google Scholar 

  34. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. Manuscript on ArXiv: 0710.3901 (2008)

    Google Scholar 

  35. Telle, J.: Vertex partitioning problems: characterization, complexity and algorithms on partial k-trees, PhD Thesis, University of Oregon (1994)

    Google Scholar 

  36. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing 6, 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vizing, V.: Cartesian product of graphs. Vychisl. Sistemy, 209–212 (1963) (Russian)

    Google Scholar 

  38. Vizing, V.: Some unsolved problems in graph theory. Uspehi Mat. Nauk 23, 117–134 (1968) (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hon, WK., Kloks, T., Liu, HH., Poon, SH., Wang, YL. (2013). On Independence Domination. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics