Skip to main content

Fluctuations, Trajectory Entropy and Ziegler’s Maximum Entropy Production Principle

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter discusses two current interpretations of the maximum entropy production principle—as a physical principle and as an inference procedure. A simple model of relaxation of an isolated system towards equilibrium is considered for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to their definitions [2729], γ ii  > 0 and γ11γ22−γ 212  ≥ 0.

  2. 2.

    For small τ values: β ij Δα i Δα j  ≪ γ ij Δα i Δα * j (because γ ij  = γ 0 ij ).

  3. 3.

    For small τ values: dα * i /dt ≈ −Δα * i /τ. The minus sign arises from the fact that Δα * i is the difference between the initial and final value.

  4. 4.

    For one approximation, extremization is carried out for a random deviation from the equilibrium, whereas for the other approximation, it is carried out for a thermodynamic flux, i.e. the most probable deviation.

  5. 5.

    Mathematical models are absolutely unsuitable for falsification. So, a model is only some more or less crude and often one-sided reflection of some part of a phenomenon, whereas MEPP is the principle reflecting the dissipative properties that are observed in nature rather than in its model.

  6. 6.

    Indeed, the researcher’s intention to mathematically make the most unprejudiced prediction in the conditions of incomplete information about the system is the essence of this method. Therefore, if a phenomenon is very poorly experimentally studied (i.e. there are insufficient constraints), then anything can be predicted using MaxEnt (i.e. there are no truth criteria). In contrast, when MaxEP or MaxEnt are considered as physical principles, there are far fewer possibilities for drawing arbitrary conclusions. Methods that predict something specific for poorly studied phenomena (from which their falsifiability derives) are especially valuable.

  7. 7.

    If this cannot be achieved by selecting the constraints, then other kinds of informational entropy can always be used, for example, by Tsallis, Abe, Kullback, and many others [23, 30].

Abbreviations

t :

Time

A i (t):

Set of macroscopic state variables

A eq i :

Set of macroscopic state variables in equilibrium

W(α):

Probability of finding the equilibrium system in macrostate α

P(α 0 |α, τ):

Conditional probability that, given the system is in initial state α 0 , it will be in state α after time τ

S(α):

Entropy in state α

S tr(α 0 |α, τ):

Trajectory entropy that, given the system is in initial state α 0 , it will be in state α after time τ

ΔS(α):

S(α) − S(0)

X i :

Thermodynamic forces

J i :

Thermodynamic fluxes

L ij :

Kinetic coefficients

α i :

=A i (t) − A eq i

α :

Macroscopic (non-equilibrium) state vector with components α i

τ:

Observation time

Γ(α):

Number of microscopic states realizing macrostate α

Γ(α 0 |α, τ):

Number of microscopic trajectories realizing the transition from α 0 to α during time τ

Ω, Ξ:

Normalization constants

σ:

Entropy production (or entropy production density for the model under consideration)

β ij :

Coefficient that is inversely proportional to the variance of α relative to its equilibrium value (α = 0)

γ ij :

Coefficient that is inversely proportional to the variance of α relative to its average (most probable) value α*(α 0 , τ) during the transition from α 0 during time τ

γ 0 ij :

ij τ

References

  1. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Report 426(1), 1–45 (2006)

    Article  MathSciNet  Google Scholar 

  2. Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium Thermodynamics and the Production of Entropy in Life, Earth, and Beyond. Springer, Heidelberg (2004)

    Google Scholar 

  3. Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a review of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)

    Article  Google Scholar 

  4. Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary state. J. Phys. A: Math. Gen. 36, 631–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dewar, R.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371–L381 (2005)

    Google Scholar 

  6. Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11, 931–944 (2009)

    Article  Google Scholar 

  8. Dewar, R.C., Maritan, A.: The theoretical basis of maximum entropy production. (Chapter in this book)

    Google Scholar 

  9. Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113, (15 pp) (2009)

    Google Scholar 

  10. Dyke, J., Kleidon, A.: The maximum entropy production principle: its theoretical foundations and applications to the earth system. Entropy 12, 613–630 (2010)

    Article  Google Scholar 

  11. Jones, W.: Variational principles for entropy production and predictive statistical mechanics. J. Phys. A: Math. Gen. 16, 3629–3635 (1983)

    Article  MATH  Google Scholar 

  12. Martyushev, L.M.: The maximum entropy production principle: two basic questions. Phil. Trans. R. Soc. B 365, 1333–1334 (2010)

    Article  Google Scholar 

  13. Kohler, M.: Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremalprinzips. Z. Physik. 124, 772–789 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ziman, J.M.: The general variational principle of transport theory. Can. J. Phys. 34, 1256–1273 (1956)

    Article  MathSciNet  Google Scholar 

  15. Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 91–193. North-Holland, Amsterdam (1963)

    Google Scholar 

  16. Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  17. Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113, (7 pages) (2011)

    Google Scholar 

  18. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  19. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Filyukov, A.A., Karpov, V.Ya.: Method of the most probable path of evolution in the theory of stationary irreversible processes. J. Engin. Phys. Thermophys. 13(6), 416–419 (1967)

    Google Scholar 

  21. Monthus, C.: Non-equilibrium steady state: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints. J. Stat. Mechanics: Theor. Exp. 3, P03008 (36 pp) (2011)

    Google Scholar 

  22. Smith, E.: Large-deviation principle, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Rep. Prog. Phys. 74, 046601 (38 pp) (2011)

    Google Scholar 

  23. Stock, G., Ghosh, K., Dill, K.A.: Maximum Caliber: a variational approach applied to two-state dynamics. J. Chem. Phys. 128, 194102 (12 pp) (2008)

    Google Scholar 

  24. Ge, H., Presse, S., Ghosh, K., Dill, K.A.: Markov processes follow from the principle of maximum caliber. J. Chem. Phys. 136, 064108 (5 pp) (2012)

    Google Scholar 

  25. Ghosh, K., Dill, K.A., Inamdar, M.M., Seitaridou, E., Phillips, R.: Teaching the principles of statistical dynamics. Am. J. Phys. 74(2), 123–133 (2006)

    Article  Google Scholar 

  26. Landau, L.D., Lifshitz E.M.: Statistical Physics, Part 1. vol. 5. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  27. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  28. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2007)

    Google Scholar 

  29. Onsager, L.: Reciprocal Relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1953)

    Article  Google Scholar 

  30. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys Rev. 91(6), 1505–1512 (1953)

    Google Scholar 

  31. Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)

    Article  Google Scholar 

  32. Martyushev, L.M.: e-print arXiv:1011.4137

    Google Scholar 

  33. Reichenbach, H.: The Direction of Time. University of California Press, California (1991)

    Google Scholar 

  34. Grunbaum, A.: Philosophical Problems of Space and Time. Knopf, New York (1963)

    Google Scholar 

  35. Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1958)

    MATH  Google Scholar 

  36. Caldeira, K.: The maximum entropy principle: a critical discussion. An editorial comment. Clim. Change 85, 267–269 (2007)

    Article  Google Scholar 

  37. Goody, R.: Maximum entropy production in climatic theory. J. Atmos. Sci. 64, 2735–2739 (2007)

    Article  MathSciNet  Google Scholar 

  38. Lavenda, B.H.: Statistical Physics. A Probabilistic Approach. Wiley, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Martyushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seleznev, V.D., Martyushev, L.M. (2014). Fluctuations, Trajectory Entropy and Ziegler’s Maximum Entropy Production Principle. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics