Skip to main content

Dissipation Rate Functions, Pseudopotentials, Potentials and Yield Surfaces

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter is about the role of the dissipation rate function—and other functions derived from it—in determining the constitutive behaviour of dissipative materials. It consists of a discussion of some general theory, followed by examples. We address the class of materials for which knowledge of the functional form of the dissipation rate function supplies the complete constitutive response, without recourse to further assumptions. A careful distinction is drawn between functions that are true potentials and those that are pseudopotentials (defined in the chapter), in order to clarify some aspects of terminology that the Author has elsewhere found confusing. In plasticity theory the intimate relationship between the dissipation rate function and the yield surface is explored. The chapter is illustrated by examples of simple one- and two-dimensional conceptual models, as well as full continuum models. Both rate independent (plastic) and rate-dependent (viscous, or viscoplastic) models are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( d\left( {x,v} \right) \) :

Dissipation rate function

\( d^{*}\left( {x,\chi } \right) \) :

Dissipation rate function (alternative functional form)

\( I_{\rm X} \left( \chi \right) \) :

Indicator function of a set X

k :

Plastic strength

n :

Order of homogeneous dissipation rate function in velocities

\( N_{\rm X} \left( \chi \right) \) :

Normal cone to a convex set X

r :

Reference velocity

R :

Reference force

v :

Generalised velocity (of state variable)

x :

State variable

\( w\left( {x,\chi } \right) \) :

Flow potential

\( y\left( {x,\chi } \right) \) :

Yield function

\( \bar{y}\left( {x,\chi } \right) \) :

Canonical form of yield function

\( z\left( {x,v} \right) \) :

Force potential

\( \gamma_{\rm X} \left( \chi \right) \) :

Gauge or Minkowski function of a convex set X

\( \uptheta \) :

Absolute temperature

\( \lambda \) :

Scalar multiplier

µ:

Viscosity

\( \Uplambda \) :

Lagrangian multiplier

\( \uptau \) :

Dummy variable in integral transform

\( \chi \) :

Generalized force

\( S\left( x \right) = \left\{ {\begin{array}{*{20}l} { - 1,} & {x < 0} \\ { \in \left[ { - 1,1} \right],} & {x = 0} \\ { + 1,} & {x > 0} \\ \end{array} } \right. \) :

Generalised signum function

\( \left\langle x \right\rangle = \left\{ {\begin{array}{*{20}l} {0,} & {x < 0} \\ {x,} & {x \ge 0} \\ \end{array} } \right. \) :

Macaulay brackets

\( \left\langle {x,y} \right\rangle \) :

Inner product

References

  1. Collins, I.F., Houlsby, G.T.: Application of thermomechanical principles to the modelling of geotechnical materials. Proc. R. Soc. Lond. Ser. A 453, 1975–2001 (1997)

    Article  MATH  Google Scholar 

  2. Houlsby, G.T.: A study of plasticity theory and its applicability to soils. PhD Thesis, Cambridge University (1981)

    Google Scholar 

  3. Houlsby, G.T., Puzrin, A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast 16(9), 1017–1047 (2000)

    Article  MATH  Google Scholar 

  4. Houlsby, G.T., Puzrin, A.M.: Principles of hyperplasticity. Springer, London (2006)

    Google Scholar 

  5. Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials. Cambridge University Press (1990)

    Google Scholar 

  6. Maugin, G.A.: The thermodynamics of plasticity and fracture. Cambridge University Press (1992)

    Google Scholar 

  7. Maugin, G.A.: The thermodynamics of nonlinear irreversible behaviours. World Scientific, Singapore (1999)

    Google Scholar 

  8. Roscoe, K.H., Burland, J.B.: On the generalized behavior of ‘wet’ clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity. Cambridge University Press, pp. 535–609 (1968)

    Google Scholar 

  9. Truesdell, C.: A first course in rational continuum mechanics. Academic Press, New York (1977)

    MATH  Google Scholar 

  10. Ziegler, H.: An Introduction to thermomechanics. North Holland, Amsterdam (1977). (2nd edition 1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy T. Houlsby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houlsby, G.T. (2014). Dissipation Rate Functions, Pseudopotentials, Potentials and Yield Surfaces. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics