Skip to main content

Entropy Production-Based Closure of the Moment Equations for Radiative Transfer

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Heat radiation in gases or plasmas is usually out of local thermodynamic equilibrium (LTE) even if the underlying matter is in LTE. Radiative transfer can then be described with the radiative transfer equation (RTE) for the radiation intensity. A common approach to solve the RTE consists in a moment expansion of the radiation intensity, which leads to an infinite set of coupled hyperbolic partial differential equations for the moments. A truncation of the moment equations requires the definition of a closure. We recommend to use a closure based on a constrained minimum entropy production rate principle. It yields transport coefficients (e.g., effective mean absorption coefficients and Eddington factor) in accordance with the analytically known limit cases. In particular, it corrects errors and drawbacks from other closures often used, like the maximum entropy principle (e.g., the M1 approximation) and the isotropic diffusive P1 approximation. This chapter provides a theoretical overview on the entropy production closure, with results for an illustrative artificial example and for a realistic air plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following we will skip the term specific.

  2. 2.

    Three and more photon processes are disregarded.

References

  1. Chandrasekhar, S.: Radiative Transfer. Dover Publ. Inc, New York (1960)

    Google Scholar 

  2. Jones, G.R., Fang, M.T.C.: The physics of high-power arcs. Rep. Prog. Phys. 43, 1415 (1980)

    Google Scholar 

  3. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Washington, Philadelphia (1992)

    Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Elsevier, Amsterdam (2005)

    Google Scholar 

  5. Tien, C.L,: Radiation properties of gases. In: Irvine Jr, T.F, Hartnett, J.P (eds.) Advances in heat transfer, vol. 5. Academic Press, Inc., New York, 253 (1968)

    Google Scholar 

  6. Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, USA (2005)

    Google Scholar 

  7. Christen, T., Kassubek, F.: Minimum entropy production closure of the photo-hydrodynamic equations for radiative heat transfer. J. Quant. Spectrosc. Radiat. Transfer. 110, 452 (2009)

    Google Scholar 

  8. Christen T, Kassubek F, and Gati R.: Radiative heat transfer and effective transport coefficients. In: Aziz Belmiloudi (ed.) Heat Transfer—Mathematical modelling, numerical methods and information technology, InTech, Rijeka, Croatia (2011)

    Google Scholar 

  9. Kohler, M.: Behandlung von Nichtgleichgewichtsvorg¨angen mit Hilfe eines Extremalprinips. Z. Physik 124, 772 (1948)

    Google Scholar 

  10. Ziman, J.M.: The general variational principle of transport theory. Can. J. Phys. 34, 1256 (1956)

    Google Scholar 

  11. Ziman, J.M.: Electrons and Phonons. Clarendon Press, Oxford (1967)

    Google Scholar 

  12. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry, and biology. Phys. Rep. 426, 1 (2006)

    Google Scholar 

  13. Minerbo, G.N.: Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transfer. 20, 541 (1978)

    Google Scholar 

  14. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021 (1996)

    Google Scholar 

  15. Turpault, R.: A consistent multigroup model for radiative transfer and its underlying mean opacities. J. Quant. Spectrosc. Radiat. Transfer. 94, 357 (2005)

    Google Scholar 

  16. Essex, C.: Minimum entropy production in the steady state and radiative transfer. The Astrophys. J. 285, 279 (1984)

    Google Scholar 

  17. Würfel, P., Ruppel, W.: The flow equilibrium of a body in a radiative field. J. Phys. C: Solid State Phys. 18, 2987 (1985)

    Google Scholar 

  18. Kabelac, S.: Thermodynamik der Strahlung. Vieweg, Braunschweig (1994)

    Google Scholar 

  19. Santillan, M., de Parga, G.A., Angulo-Brown, F.: Black-body radiation and the maximum entropy production regime. Eur. J. Phys. 19, 361 (1998)

    Google Scholar 

  20. Christen, T.: Nonequilibrium distribution function and generalized hydrodynamics for independent electrons from an entropy production rate principle. Europhys. Lett. 89, 57007 (2010)

    Google Scholar 

  21. Oxenius, J.: Radiative transfer and irreversibility. J. Quant. Spectrosc. Radiat. Transfer 6, 65 (1966)

    Google Scholar 

  22. Kröll, W.: Properties of the entropy production due to radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 7, 715 (1967)

    Google Scholar 

  23. Struchtrup H.: Rational extended thermodynamics Müller I and Ruggeri T. (ed.) p. 308. Springer, New York, Second Edition (1998)

    Google Scholar 

  24. Christen, T.: Modeling electric discharges with entropy production rate principles. Entropy 11, 1042 (2009)

    Google Scholar 

  25. Kershaw D, Flux limiters nature’s own way Lawrence Livermore Laboratory UCRL-78378 (1976)

    Google Scholar 

  26. Nordborg, H., Iordanidis, A.: Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. J. Phys. D Appl. Phys. 41, 135205 (2008)

    Google Scholar 

  27. Essex C and Kennedy DC J. Stat. Phys. 94, 253 (1999). (or Minimum entropy production of neutrino radiation in the steady state, Report No: DOE/ER/40272-280 UFIFT-HEP-97- 7)

    Google Scholar 

  28. Data for the air spectrum has been provided by R. Gati (ABB Corporate Research) with use of tools by V. Aubrecht

    Google Scholar 

  29. Aubrecht, V., Lowke, J.J.: Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics. J. Phys. D Appl. Phys. 27, 2066 (1994)

    Google Scholar 

  30. Chaveau, S., et al.: Radiative transfer in LTE air plasmas for temperatures up to 15,000 K. J. Quant. Spectrosc. Radiat. Transfer. 77, 113 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Christen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christen, T., Kassubek, F. (2014). Entropy Production-Based Closure of the Moment Equations for Radiative Transfer. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics