Skip to main content

Thermodynamic Insights into Transitions Between Climate States Under Changes in Solar and Greenhouse Forcing

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

  • 2750 Accesses

Abstract

A detailed thermodynamic, sensitivity analysis of the steady state climate system is performed with respect to the solar constant S * and the carbon dioxide concentration of the atmosphere, [CO2]. Using PlaSim, an Earth-like general circulation model of intermediate complexity, S * is modulated between 1,160 and 1,510 Wm−2 for values of [CO2] ranging from 90 to 2,880 ppm. It is observed that in a wide parameter range, which includes the present climate conditions, the climate is multistable, i.e. there are two coexisting attractors, one characterised by warm, moist climates (W) and the other by a completely frozen sea surface (Snowball Earth, SB). For both sets of states, empirical relationships for surface temperature, material entropy production, meridional energy transport, Carnot efficiency and dissipation of kinetic energy are constructed in the parametric plane ([CO2], S *). Linear relationships are found for the two transition lines (W  SB and SB  W) in ([CO2], S *) between S * and the logarithm of [CO2]. The dynamical and thermodynamical properties of W and SB are completely different. W states are dominated by the hydrological cycle and latent heat is prominent in the material entropy production. The SB states are mainly dry climates where heat transport is realized through sensible heat fluxes and entropy mostly generated by dissipation of kinetic energy. It is also shown that the Carnot-like efficiency regularly increases towards each transition between W and SB and that each transition is associated with a large decrease of the Carnot efficiency indicating a restabilisation of the system. Furthermore, it has been found that in SB states, changes in the vertical temperature structure are responsible for the observed changes in the meridional transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnol’d, V.I.: Catastrophe Theory, 3rd edn. Springer, Berlin (1992)

    Google Scholar 

  2. Budyko, M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)

    Article  Google Scholar 

  3. Caldeira, K., Kasting, J.F.: Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359, 226–228 (1992)

    Article  Google Scholar 

  4. Caballero, R., Langen, P.L.: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett. 32, L02705 (2005). doi:10.1029/2004GL021581

    Article  Google Scholar 

  5. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics, Dover, New York (1984)

    Google Scholar 

  6. Donohoe, A., Battisti, D.S.: What determines meridional heat transport in climate models? J. Clim. 25, 3832–3850 (2012)

    Article  Google Scholar 

  7. Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report no. 2, Institute for Theoretical Meteorology, Copenhagen University, Denmark (1970)

    Google Scholar 

  8. Fraedrich, K.: Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q. J. R. Meteorol. Soc. 105, 147–167 (1979)

    Article  Google Scholar 

  9. Fraedrich, K.: A suite of user-friendly global climate models: hysteresis experiments. Eur. Phys. J. Plus 127 (2012). doi:10.1140/epjp/i2012-12053-7

  10. Fraedrich, K., Lunkeit, F.: Diagnosing the entropy budget of a climate model. Tellus A. 60, 921–931 (2008)

    Article  Google Scholar 

  11. Fraedrich, K., Jansen, H., Kirk, U., Luksch, U., Lunkeit, F.: The planet simulator: towards a user friendly model. Meteor. Z. 14, 299–304 (2005)

    Article  Google Scholar 

  12. Gallavotti, G.: Nonequilibrium statistical mechanics (stationary): overview. In: Francois, J.-P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 530–539. Elsevier, Amsterdam (2006)

    Google Scholar 

  13. Ghil, M.: Climate stability for a sellers-type model. J. Atmos. Sci. 33, 3–20 (1976)

    Article  MathSciNet  Google Scholar 

  14. Goody, R.: Sources and sinks of climate entropy. Q. J. R. Meteor. Soc. 126, 1953–1970 (2000)

    Article  Google Scholar 

  15. Gough, D.O.: Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981)

    Article  Google Scholar 

  16. Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717 (2007). doi:10.1088/1751-8113/40/31/N01

  17. Held, I.M., Soden, B.J.: Robust responses of the hydrological cycle to global warming. J. Climate 19, 5686–5699 (2006)

    Article  Google Scholar 

  18. Hoffman, P.F., Schrag, D.P.: The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  Google Scholar 

  19. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P.: A Neoproterozoic snowball Earth. Science. 281, 1342–1346 (1998). doi:10.1126/science.281.5381.1342

    Google Scholar 

  20. Holton, J.R.: 2004. An introduction to dynamic meteorology, IV edn. Elsevier, New York

    Google Scholar 

  21. Johnson, D.R.: General coldness of the climate models and the second law: implications for modelling the Earth system. J. Climate 10, 2826–2846 (1997)

    Article  Google Scholar 

  22. Johnson, D.R.: Entropy, the Lorenz energy cycle, and climate. In: Randall, D.A. (ed.) General Circulation Model Development: Past, Present and Future, Internation Geophysics Series, vol. 70, pp. 659–720. Academic Press, New York (2000)

    Google Scholar 

  23. Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffmann, K.H., Arthur, M.A.: Two or four neoproterozoic glaciations? Geology 26, 1059–1063 (1998)

    Article  Google Scholar 

  24. Kleidon, A., Lorenz, R.D. (eds.): Nonequilibrium Thermodynamics and Maximum Entropy Production: Life, Earth and Beyond, pp. 260. Springer, Berlin (2005)

    Google Scholar 

  25. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structure. Wiley, England (1998)

    Google Scholar 

  26. Kuo, H.L.: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 22, 40–63 (1965)

    Article  Google Scholar 

  27. Kuo, H.L.: Further studies of the parameterization of the influence of cumulus convection. J. Atmos. Sci. 22, 40–63 (1974)

    Article  Google Scholar 

  28. Lacis, A.A., Hanson, J.: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci. 31, 118–133 (1974)

    Article  Google Scholar 

  29. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1. Pergamon, Oxford (1980)

    Google Scholar 

  30. Laursen, L., Eliasen, E.: On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus A. 41, 385–400 (1989)

    Article  Google Scholar 

  31. Lorenz, E.N.: Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167 (1955)

    Article  Google Scholar 

  32. Lorenz, E.N.: The nature and theory of the general circulation of the atmosphere. WMO Bullettin, April 1967. World Meteorological Organization, Geneva (1967)

    Google Scholar 

  33. Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteorol. 17, 187–202 (1979)

    Article  Google Scholar 

  34. Louis, J.-F., Tiedtke, M., Geleyn, J.-F.: A short history of the PBL parameterization at ECMWF. In: Proceedings of the ECMWF Workshop on planetary boundary layer parameterization, Reading, 25–27 November 1981. pp. 59–80 (1982)

    Google Scholar 

  35. Lucarini, V.: Thermodynamic efficiency and entropy production in the climate system. Phys. Rev. E 80, 021118 (2009)

    Article  Google Scholar 

  36. Lucarini, V., Ragone, F.: Energetics of climate models: net energy balance and meridional enthalpy transport. Rev. Geophys. 49, RG1001 (2011). doi:10.1029/2009RG000323

  37. Lucarini, V., Fraedrich, K., Lunkeit, F.: Thermodynamic analysis of snowball Earth hysteresis experiment: efficiency, entropy production, and irreversibility. Q. J. R. Meteorol. Soc. 136, 2–11 (2010)

    Article  Google Scholar 

  38. Lucarini, V., Fraedrich, K., Lunkeit, F.: Thermodynamics of climate change: general sensitivities. Atmos. Chem. Phys. 10, 9729–9737 (2010)

    Article  Google Scholar 

  39. Marotzke, J., Botztet, M.: Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys. Res. Lett. 34, L16704 (2007). doi:10.1029/2006GL028880

  40. Myhre, G., Highwood, E.J., Shine, P.K., Stordal, F.: New estimates of the radiative forcing due to well mixed greenhouse gas. Geo. Res. Letters 25(14), 2715–2718 (1998)

    Article  Google Scholar 

  41. Orszag, S.A.: Transform method for the calculation of a vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890–895 (1970)

    Article  Google Scholar 

  42. Pascale, S., Gregory, J., Ambaum, M., Tailleux, R.: Climate entropy budget of the HadCM3 atmosphere-ocean general circulation model of FAMOUS, its low-resolution version. Clim. Dyn. 36(5–6), 1189–1206 (2011)

    Article  Google Scholar 

  43. Pascale, S., Gregory, J., Ambaum, M., Tailleux, R.: A parametric sensitivity study of the entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. (2011). doi:10.1007/s00382-011-0996-2 (in press)

  44. Pauluis, O., Held, I.M.: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59, 125–139 (2002)

    Article  Google Scholar 

  45. Pauluis, O., Held, I.M.: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: latent heat transport and moist processes. J. Atmos. Sci. 59, 140–149 (2002)

    Article  Google Scholar 

  46. Peixoto, J.P., Oort, A.H., de Almeida, M., Tome, A.: Entropy budget of the atmosphere. J. Geophys. Res. 96(D6), 10981–10988 (1991)

    Google Scholar 

  47. Pierrehumbert, R.T.: High levels of atmospheric carbon dioxide necessary for the termination of global glaciations. Nature 429, 646–649 (2004)

    Article  Google Scholar 

  48. Pierrehumbert, R.T.: Climate dynamics of a hard snowball Earth. J. Geophys. Res. 110, D01111 (2005). doi:10.1029/2004JD005162

    Article  Google Scholar 

  49. Pierrehumbert, R.T., Abbot, D.S., Voigt, A., Koll, D.: Climate of the Neoproterozoic. Ann. Rev. Earth Planet Sci. 39, 417–460 (2011)

    Google Scholar 

  50. Sasamori, T.: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteorol. 7, 721–729 (1968)

    Article  Google Scholar 

  51. Sellers, W.D.: A global climatic model based on the energy balance of the Earth-atmosphere system. J. Appl. Meteorol. 8, 392–400 (1969)

    Article  Google Scholar 

  52. Slingo, A., Slingo, J.M.: Response of the national center for atmospheric research community climate model to improvements in the representation of clouds. J. Geophys. Res. 96, 15341–15357 (1991)

    Article  Google Scholar 

  53. Stephens, G.L.: Radiation profiles in extended water clouds. 2: parameterization schemes. J. Atmos. Sci. 35, 2123–2132 (1978)

    Article  Google Scholar 

  54. Stephens, G.L., Ackerman, S., Smith, E.A.: A shortwave parameterisation revised to improve cloud absorption. J. Atmos. Sci. 41, 687–690 (1984)

    Article  Google Scholar 

  55. Stone, P.H.: Baroclinic adjustment. J. Atmos. Sci. 35, 561–571 (1978)

    Article  Google Scholar 

  56. Voigt, A., Marotzke, J.: The transition from the present-day climate to a modern snowball Earth. Clim. Dyn. 35, 887–905 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

RB, VL and SP acknowledges the financial support of KlimaCamus (Hamburg), CLISAP and the EU-ERC project NAMASTE “Thermodynamics of the climate system”. The authors thank F. Ragone, F. Lunkeit for help and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Boschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boschi, R., Lucarini, V., Pascale, S. (2014). Thermodynamic Insights into Transitions Between Climate States Under Changes in Solar and Greenhouse Forcing. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics