Skip to main content

DNA Structures on Silicon and Diamond

  • Chapter

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 52))

Abstract

In the design of DNA-based hybrid devices, it is essential to have knowledge of the structural, electronic and optical properties of these biomolecular films. Spectroscopic ellipsometry is a powerful technique to probe and asses these properties. In this chapter, we review its application to biomolecular films of single DNA bases and molecules on silicon and diamond surfaces characterized in the spectral range from the near-infrared (NIR) through the visible (Vis) and toward the vacuum ultraviolet (VUV). The reported optical constants of various DNA structures are of great interest, particularly in the development of biosensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, J.K. Barton, Science 262, 1025 (1993)

    Article  ADS  Google Scholar 

  2. H.W. Fink, C. Schonenberger, Nature 398, 407 (1999)

    Article  ADS  Google Scholar 

  3. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000)

    Article  ADS  Google Scholar 

  4. H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, M. Shimizu, Appl. Phys. Lett. 79, 2462 (2001)

    Article  ADS  Google Scholar 

  5. G. Cuniberti, L. Craco, D. Porath, C. Dekker, Phys. Rev. B 65, 241314(R) (2002)

    Article  ADS  Google Scholar 

  6. H.W. Fink, Cell. Mol. Life Sci. 58, 1 (2001)

    Article  Google Scholar 

  7. Y. Zhang, R.H. Austin, J. Kraeft, E.C. Cox, N.P. Ong, Phys. Rev. Lett. 89, 198102(1) (2002)

    ADS  Google Scholar 

  8. A.Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V.T. Volkov, D.V. Klinov, H. Bouchiat, Science 291, 280 (2001)

    Article  ADS  Google Scholar 

  9. R.G. Endres, D.L. Cox, R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  10. E. Braun, Y. Eichen, U. Sivan, G. Ben Yoseph, Nature 391, 775 (1998)

    Article  ADS  Google Scholar 

  11. O. Harnack, W.E. Ford, A. Yasuda, J.M. Wessels, Nano Lett. 2, 919 (2002)

    Article  ADS  Google Scholar 

  12. J. Richter, M. Mertig, W. Pompe, I. Monch, H.K. Schackert, Appl. Phys. Lett. 78, 536 (2001)

    Article  ADS  Google Scholar 

  13. E. Ben Jacob, Z. Hermon, S. Caspi, Phys. Lett. A 263, 199 (1999)

    Article  ADS  Google Scholar 

  14. Z. Hermon, S. Caspi, E. Ben Jacob, Europhys. Lett. 43, 482 (1998)

    Article  ADS  Google Scholar 

  15. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai, H.Y. Choi, Phys. Rev. Lett. 87, 198102(1) (2001)

    ADS  Google Scholar 

  16. M. Zwolak, M. Di Ventra, Appl. Phys. Lett. 81, 925 (2002)

    Article  ADS  Google Scholar 

  17. G. Mauricio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R. Rinaldi, Nano Lett. 3, 479 (2003)

    Article  ADS  Google Scholar 

  18. G. Demirel, M.O. Caglayan, B. Garipcan, E. Piskin, Surf. Sci. 602, 952 (2008)

    Article  ADS  Google Scholar 

  19. S. Elhadj, G. Singh, R.F. Saraf, Langmuir 20, 5539 (2004)

    Article  Google Scholar 

  20. S. Wenmackers, S.D. Pop, K. Roodenko, V. Vermeeren, O.A. Williams, M. Daenen, O. Douhéret, J. D’Haen, A. Hardy, M.K. Van Bael, K. Hinrichs, C. Cobet, M. vandeVen, M. Ameloot, K. Haenen, L. Michiels, N. Esser, P. Wagner, Langmuir 24, 7269 (2008)

    Article  Google Scholar 

  21. T. Inagaki, R.N. Hamm, E.T. Arakawa, L.R. Painter, J. Chem. Phys. 61, 4246 (1974)

    Article  ADS  Google Scholar 

  22. S.R. Forrest, Chem. Rev. 97, 1793 (1997)

    Article  Google Scholar 

  23. S.D. Silaghi, M. Friedrich, C. Cobet, N. Esser, W. Braun, D.R.T. Zahn, Phys. Status Solidi B, Basic Solid State Phys. 242, 3047 (2005)

    Article  ADS  Google Scholar 

  24. K. Hinrichs, S.D. Silaghi, C. Cobet, N. Esser, D.R.T. Zahn, Phys. Status Solidi B, Basic Solid State Phys. 242, 2681 (2005)

    Article  ADS  Google Scholar 

  25. H. Fujiwara, Spectroscopic Ellipsometry. Principles and Applications (Wiley, West Sussex, 2007)

    Book  Google Scholar 

  26. W.A. McGahn, B. Johs, J.A. Woollam, Thin Solid Films 234, 443 (1993)

    Article  ADS  Google Scholar 

  27. R.L. Johnson, J. Barth, M. Cardona, D. Fuchs, A.M. Bradshaw, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 290, 606 (1990)

    Article  ADS  Google Scholar 

  28. H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew, Norwich, 2005)

    Google Scholar 

  29. D.E. Gray, S.C. Case-Green, T.S. Fell, P.J. Dobson, E.M. Southern, Langmuir 13, 2833 (1997)

    Article  Google Scholar 

  30. C.A. Sprecher, W.A. Baase, W. Curtis, Biopolymers 18, 1009 (1979)

    Article  Google Scholar 

  31. C. Kielbassa, L. Roza, B. Epe, Carcinogenesis 18, 811 (1997)

    Article  Google Scholar 

  32. R.P. Sinha, D.P. Häder, Photochem. Photobiol. Sci. 1, 225 (2002)

    Article  Google Scholar 

  33. A. Rich, M. Kasha, J. Am. Chem. Soc. 82, 6197 (1960)

    Article  Google Scholar 

  34. J.R. Fresco, A.M. Lesk, R. Gorn, P. Doty, J. Am. Chem. Soc. 83, 3155 (1961)

    Article  Google Scholar 

  35. S. Wenmackers, D.E.P. Vanpoucke, Stat. Neerl. 66, 339 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial support by Sächsisches Staatsministerium für Wissenschaft und Kunst, Deutsche Forschungsgesellschaft Graduiertenkolleg 829/1 “Accumulation of Single Molecules to Nanostructures”, Bundesministerium für Bildung und Forschung projects 05 622 ESA2, 05 KS4KTB/3, IWT-SBO (project 030219 ‘CVD Diamond: a novel multifunctional material for high temperature electronics, high power/high frequency electronics and bioelectronics’), FWO-WOG (WO.035.04N ‘Hybrid Systems at Nanometer Scale’), the IUAP-P6/42 program ‘Quantum Effects in Clusters and Nanowires’, the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science—Contract R II 3-CT-2004-506008”), and the Life Sciences Impulse Program of the transnationale Universiteit Limburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona D. Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pop, S.D., Hinrichs, K., Wenmackers, S., Cobet, C., Esser, N., Zahn, D.R.T. (2014). DNA Structures on Silicon and Diamond. In: Hinrichs, K., Eichhorn, KJ. (eds) Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40128-2_3

Download citation

Publish with us

Policies and ethics