Skip to main content

Pump Hydraulics and Physical Concepts

  • Chapter
  • First Online:
Centrifugal Pumps

Abstract

This chapter deals with the calculation methods essentially common to all impellers and diffusing elements regardless of the specific type. The details of calculation and design of the various types of impellers and collectors are discussed in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With profiled blades, the effect of the blockage may not be easily defined in certain conditions. Generally, e1 must be selected where the cross section is narrowest relative to the next blade. The effect of the angle λ (if any) must be considered iteratively.

  2. 2.

    Recirculation normally occurs at partload below q* = 0.5–0.7 (Chap. 5). It may, however, occur even near the best efficiency point when extremely wide impellers are used (for example in dredge pumps).

  3. 3.

    When pumping oils or other media of high viscosity, head and efficiency are severely reduced compared with the pumping of water, Chap. 13.1.

  4. 4.

    The sound power radiated as air-, fluid-, and solid-borne noise is negligibly small compared to all other losses.

  5. 5.

    This experimental finding follows from data in [35]; it cannot be deduced by inserting half the angular velocity in the equation given earlier.

  6. 6.

    Equations (T3.6.3) and (T3.6.5) are based on [33] and [25], Eqs. (T3.6.8) to (T3.6.11) on [6], Eq. (T3.6.12) on [14].

  7. 7.

    The impeller sidewall gap integration according to Table 9.1 is recommended for more thorough investigations.

  8. 8.

    It is open to debate whether ε/s or ε/2s is more relevant for small clearances. Undoubtedly the hydraulic diameter is dh = 2 s. Considering the structure of the flow one may rather tend intuitively to select ε/s, which could be viewed as a local obstruction to the flow.

  9. 9.

    In order to derive these relationships the measurements in [21] were recalculated into a more general form.

  10. 10.

    The mentioned exponent does not imply a contradiction to Eq. (T3.5.6a) which refers to different pumps with optimally adjusted mechanical equipment, while the scaling of the mechanical losses Pm of a given pump assumes given mechanical components which are over-dimensioned at reduced speed.

  11. 11.

    Exceptions are axial pumps with very high specific speeds, which under certain conditions, have to be designed without diffusing elements, Chap. 7.6.6.

  12. 12.

    The relationship ηh = η0.5 which is sometimes employed does not furnish any useful values either at very low overall efficiencies (small pumps) or at low partload.

References

  1. Baker, W.E., et al.: Similarity methods in engineering dynamics. Revised edn. Elsevier, Amsterdam (1991)

    Google Scholar 

  2. Brodersen, S.: Reduzierung der Scheibenreibung bei Strömungsmaschinen. Forsch Ing Wes. 59, 184–186 (1993)

    Article  Google Scholar 

  3. Busemann, A.: Das Förderhöhenverhältnis radialer Kreiselpumpen mit logarithmisch-spiraligen Schaufeln. ZAMM 8, 5 (1928)

    Article  Google Scholar 

  4. Childs, D.W. et al.: Annular honeycomb seal test results for leakage and rotordynamic coefficients. ASME Paper 88-Trib-35

    Google Scholar 

  5. Childs, D.W.: Dynamic analysis of turbulent annular seals based on Hirs’ lubrication equation. ASME 82-Lub-41 (1982)

    Google Scholar 

  6. Dailey, J.W., Nece, R.E.: Chamber dimension effects on frictional resistance of enclosed rotating disks. ASME J Basic Engng. 82, 217–232 (1960)

    Article  Google Scholar 

  7. Engeda, A., et al.: Correlation of tip clearance effects to impeller geometry and fluid dynamics. ASME Paper 88-GT-92 (1988)

    Google Scholar 

  8. Engeda, A.: Untersuchungen an Kreiselpumpen mit offenen und geschlossenen Laufrädern im Pumpen- und Turbinenbetrieb. Diss. TU Hannover, Deutschland (1987)

    Google Scholar 

  9. Florjancic S: Annular seals of high energy centrifugal pumps: A new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Diss. ETH Zürich. (1990)

    Google Scholar 

  10. Fukuda, H.: The effect of runner surface roughness on the performance of a Francis turbine. Bulletin JSME. 7(4), 346–356 (1964)

    Article  Google Scholar 

  11. Geis, H.: Experimentelle Untersuchungen der Radseitenverluste von Hochdruck-Wasserturbinen radialer Bauart. Diss. TH Darmstadt, Deutschland (1985)

    Google Scholar 

  12. Görtler, H.: Dimensionsanalyse. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  13. Graf E et al.: Three-dimensional analysis in a multi-stage pump crossover diffuser. ASME Winter Annual Meeting. 22–29 (1990)

    Google Scholar 

  14. Gülich, J.F.: Disk friction losses of closed turbomachine impellers. Forsch Ing Wes. 68, 87–97 (2003)

    Article  Google Scholar 

  15. Gülich, J.F.: Effect of Reynolds-number and surface roughness on the efficiency of centrifugal pumps. ASME J Fluids Engng. 125(4), 670–679 (2003)

    Article  Google Scholar 

  16. Gülich JF: Pumping highly viscous fluids with centrifugal pumps. World Pumps, 395/396, Aug/Sept. 1999

    Google Scholar 

  17. Hamkins, C.P.: The surface flow angle in rotating flow: Application to the centrifugal impeller side gap. Diss. TU Kaiserslautern, Shaker, Aachen, Deutschland (2000)

    Google Scholar 

  18. Henning, H.: Experimentelle Untersuchungen an als Drosseln arbeitenden Gewinderillendichtungen für hydraulische Strömungsmaschinen. Diss. TU Braunschweig, Deutschland (1979)

    Google Scholar 

  19. Hergt, P.: Hydraulic design of rotodynamic pumps. In: Rada Krishna (Hrsg) Hydraulic design of hydraulic machinery. Avebury, Aldershot (1997)

    Google Scholar 

  20. Hippe, L.: Wirkungsgradaufwertung bei Radialpumpen unter Berücksichtigung des Rauheitseinflusses. Diss. TH Darmstadt, Deutschland (1984)

    Google Scholar 

  21. Kosyna, G., Lünzmann, H.: Experimental investigations on the influence of leakage flow in centrifugal pumps with diagonal clearance gap. ImechE Paper C439/010 (1992)

    Google Scholar 

  22. Lauer, J., et al.: Tip clearance sensitivity of centrifugal pumps with semi-open impellers. ASME Paper FEDSM97-3366 (1997)

    Google Scholar 

  23. Lauer, J., Stoffel, B.: Theoretische Untersuchungen zum maximal erreichbaren Wirkungsgrad von Kreiselpumpen. Industriepumpen + Kompressoren. 3(4), 222–228 (1997)

    Google Scholar 

  24. Li, W.G.: The “sudden-rising head” effect in centrifugal oil pumps. World Pumps. 409, 34–36 (Oct, 2000)

    Google Scholar 

  25. Linneken, H.: Der Radreibungsverlust, insbesondere bei Turbomaschinen. AEG Mitt 47(1/2), 49–55 (1957)

    Google Scholar 

  26. Münch, A.: Untersuchungen zum Wirkungsgradpotential von Kreiselpumpen. Diss. TU Darmstadt, Deutschland (1999)

    Google Scholar 

  27. Nece, R.E., Dailey, J.W.: Roughness effects on induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Engng 82, 553–562 (1960)

    Article  Google Scholar 

  28. Nemdili, A.: Einzelverluste von Kreiselpumpen mit spezifischen Drehzahlen von nq = 15 bis 35 rpm. Diss. Uni Kaiserslautern, SAM Forschungsberichte, Bd. 1 (2000)

    Google Scholar 

  29. Ni, L.: Modellierung der Spaltverluste bei halboffenen Pumpenlaufrädern. Fortschrittber VDI Reihe. 7, 269 (1995)

    Google Scholar 

  30. Osterwalder, J., Hippe, L.: Betrachtungen zur Aufwertung von Serienpumpen. VDI Ber. 424 , pp. 1–17 (1981)

    Google Scholar 

  31. Osterwalder, J., Hippe, L.: Guidelines for efficiency scaling process of hydraulic turbo-machines with different technical roughnesses of flow passages. J Hydraul Res. 22(2), 77–102 (1984)

    Article  Google Scholar 

  32. Osterwalder, J.: Efficiency scale-up for hydraulic turbo-machines with due consideration of surface roughness. J Hydraul Res. 16(1), 55–76 (1978)

    Article  Google Scholar 

  33. Pantell, K.: Versuche über Scheibenreibung. Forsch Ing Wes. 16, 97–108 (1949/1950)

    Article  Google Scholar 

  34. Schilling, R., et al.: Strömung und Verluste in drei wichtigen Elementen radialer Kreiselpumpen. Strömungsmech Strömungsmasch. 16 (1974)

    Google Scholar 

  35. Schlichting H: Grenzschicht-Theorie. 8. Aufl, Braun, Karlsruhe, 1982

    MATH  Google Scholar 

  36. Stampa, B.: Experimentelle Untersuchungen an axial durchströmten Ringspalten. Diss. TU Braunschweig, Deutschland (1971)

    Google Scholar 

  37. Tamm, A., Eikmeier, L., Stoffel, B.: The influences of surface roughness on head, power input and efficiency of centrifugal pumps. Proc XXIst IAHR Symp Hydraulic Machinery and Systems, Lausanne (2002)

    Google Scholar 

  38. Thomae H, Stucki R: Axialschub bei mehrstufigen Pumpen. Techn Rundschau Sulzer (1970) 3,185–190

    Google Scholar 

  39. Varley, F.A.: Effects of impeller design and surface roughness on the performance of centrifugal pumps. Proc Instn Mech Engrs. 175(21), 955–969 (1961)

    Article  Google Scholar 

  40. Wagner, W.: Experimentelle Untersuchungen an radial durchströmten Spaltdichtungen. Diss. TU Braunschweig, Deutschland (1972)

    Google Scholar 

  41. Weber, D.: Experimentelle Untersuchungen an axial durchströmten kreisringförmigen Spaltdichtungen für Kreiselpumpen. Diss. TU Braunschweig, Deutschland (1971)

    Google Scholar 

  42. Welz, E.: Der Einfluß der Laufschaufelform auf Förderhöhe und Wirkungsgrad der Kreiselpumpen. Schweizer Archiv. 114–126 (April 1966)

    Google Scholar 

  43. Wiesner, F.J.: A new appraisal of Reynolds-number effects on centrifugal compressor performance. ASME J Engng Power. 101, 384–396 (1979)

    Article  Google Scholar 

  44. Wiesner, F.J.: A review of slip factors in centrifugal impellers. ASME J Engng Power 89, 558–566 (1967)

    Article  Google Scholar 

  45. Zierep, J.: Ähnlichkeitsgesetze u. Modellregeln der Strömungslehre. Braun, Karlsruhe (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gülich, J. (2014). Pump Hydraulics and Physical Concepts. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40114-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40114-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40113-8

  • Online ISBN: 978-3-642-40114-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics