Skip to main content

Noise and Vibrations

  • Chapter
  • First Online:
Centrifugal Pumps
  • 5738 Accesses

Abstract

As explained in Chap. 5, the flow at the impeller outlet is non-uniform. The diffuser vanes or volute cutwaters are thus approached by an unsteady flow. The flow in the stator acts back on the velocity field in the impeller. The related phenomena are called “rotor/stator interaction” (RSI). As a consequence of the RSI, hydraulic excitation forces are generated. These give rise to pressure pulsations, mechanical vibrations and alternating stresses in various pump components. The vibrations transmitted to the foundations spread as solid-borne noise throughout the building. The pressure pulsations excite the pump casing to vibrations. They travel as fluid-borne noise through the piping system, where they generate vibrations of the pipe walls. The vibrating walls and structures radiate air-borne noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Examples for the influence of the system on pressure pulsations can be found in [B.20]. The topic is discussed in more detail also in Sect. 10.12.3.

  2. 2.

    The measurement is done according to DIN 45635, [N.19] and ISO standards.

  3. 3.

    As per [N.25] high-energy pumps are defined as pumps whose heads per stage exceeds.\(\frac{{{\text{H}}_{\text{st,opt}}}}{{{\text{H}}_{\text{Ref}}}}>275{{\left(\frac{{{\text{n}}_{\text{q,Ref}}}}{{{\text{n}}_{\text{q}}}}\right)}^{1.85}}\left( \frac{{{\text{ }\!\!\rho\!\!\text{}}_{\text{Ref}}}}{\text{ }\!\!\rho\!\!\text{ }} \right)\) with nq, Ref=25, HRef=1 m and ρRef=1000 kg/m3. The formula is valid for 25 < nq < 67. Below nq=25 the limit is Hst, opt=275 m; no limits are defined for the range above nq=67. The topic is discussed in more detail in Sect. 15.4 where three quality classes are defined.

  4. 4.

    The definition of the total head ψtot is analogous to Eq. (8.9).

  5. 5.

    The dimensionless time is defined by t*=t × fn.

  6. 6.

    An example for this type of damping is given in [86]: The investigated system of a burner and fan was susceptible to self-excited vibrations below a specific flow rate. When testing fans with differently steep characteristics, the stable operation range increased with the steepness of the Q-H-curve.

  7. 7.

    From the wealth of literature on flow-induced vibrations, [9] and [65] are quoted.

  8. 8.

    This section is largely based on information given in [89].

  9. 9.

    The possible interaction between acoustic waves and unsteady flow in a pump could be verified experimentally by generating pressure pulsations in a system by means of a device (e.g. piston or spark) and measuring their impact on the flow patterns in the diffuser and impeller (e.g. by laser velocimetry).

  10. 10.

    If the excitation mechanism were caused by unbalanced mass forces, the mechanical vibration would be out of phase with the excitation.

References

  1. Adams, M.L.: Rotating Machinery Vibration. Marcel Dekker Inc (2001)

    Google Scholar 

  2. Alford, J.S.: Protecting turbomachinery from self-excited rotor whirl. ASME. J. Engng. for Power. 87, 333–344 (1965)

    Article  Google Scholar 

  3. Amoser, M.: Strömungsfelder und Radialkräfte an Labyrinthdichtungen hydraulischer Strömungsmaschinen. Diss. ETH. Nr. 11150 (1995)

    Google Scholar 

  4. Arndt, N., et al.: Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump. Proc. 8th. Conference on Turbomachinery, Budapest, 49–56 (1987)

    Google Scholar 

  5. Au-Yang, M.K.: Flow-induced Vibrations of Power and Process Plant Components. Professional Engineering Publishing Ltd (2001)

    Google Scholar 

  6. Berten, S.: Hydrodynamics of high specific power pumps for off-design operating conditions. Diss. EPF, Lausanne (2010)

    Google Scholar 

  7. Berten, S., et al.: Experimental investigation of flow instabilities and rotating stall in a high-energy centrifugal pump stage. ASME. FEDSM. (2009)

    Google Scholar 

  8. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape (Reissue). Krieger, Malabar (1995)

    Google Scholar 

  9. Blevins, R.D.: Flow-Induced Vibrations. (Reprinted 2nd ed.) Krieger Publishing Company, Malabar (2001)

    Google Scholar 

  10. Bolleter, U.: On blade passage tones of centrifugal pumps. Vibrations 4(3), 8–13 (1988)

    Google Scholar 

  11. Bolleter, U.: Generation and propagation of pressure pulsations in centrifugal pump systems. AECL Seminar on acoustic pulsations in rotating machinery. Toronto (1993)

    Google Scholar 

  12. Bolleter, U., et al.: Hydraulic and mechanical interactions of feedpump systems. EPRI Report TR-100990 (Sept 1992)

    Google Scholar 

  13. Bolleter, U., et al.: Rotordynamic modeling and testing of boiler feedpumps. EPRI Report. TR-100980 (Sept 1992)

    Google Scholar 

  14. Braun, O.: Part load flow in radial centrifugal pumps. Diss. EPF. Lausanne (2009)

    Google Scholar 

  15. Brennen, C.E.: Hydrodynamics of Pumps. Concepts ETI, Norwich (1994)

    Google Scholar 

  16. Casey, V.M., et al.: Flow analysis in a pump diffuser. Part 2: validation of a CFD code for steady flow. ASME. FED. 227 135–143 (1995)

    Google Scholar 

  17. Chen, Y.N.: Wasserdruckschwingungen in Spiralgehäusen von Speicherpumpen. Techn Rundschau Sulzer. Forschungsheft, 21–34 (1961)

    Google Scholar 

  18. Chen, Y.N., Beurer, P.: Strömungserregte Schwingungen an Platten infolge Karman’scher Wirbelstraßen. Pumpentagung, Karlsruhe (K6) (1973)

    Google Scholar 

  19. Chen, Y.N., Florjancic, D.: Vortex-induced resonance in a pipe system due to branching. IMech C109/75 (1975)

    Google Scholar 

  20. Chen, Y.N., et al.: Reduction of vibrations in a centrifugal pump hydraulic system pp. 78–84. IAHR Karlsruhe (1979)

    Google Scholar 

  21. Childs, D.: Turbomachinery Rotordynamics. Wiley, New York (1993)

    Google Scholar 

  22. Childs, D.W., et al.: Annular honeycomb seal test results for leakage and rotordynamic coefficients. ASME Paper. 88-Trib-35

    Google Scholar 

  23. Cooper, P., et al.: Minimum continuous stable flow in centrifugal pumps. Proc. Symp. Power. Plant. Pumps. New Orleans, 1987 EPRI CS-5857 (1988)

    Google Scholar 

  24. Corbo, M.A., Stearns, C.F.: Practical design against pump pulsations. Proc. 22nd. Interntl. Pump. Users. Symp., 137–177. Texas A&M (2005)

    Google Scholar 

  25. Cremer, R., Heckl, M.: Körperschall. 2. Aufl. Springer, Berlin (1995)

    Google Scholar 

  26. Deeprose, W.M., et al.: Current industrial pump and fan fluid-borne noise level prediction. IMechE. Paper. C251/77 43–50 (1977)

    Google Scholar 

  27. Domm, U., Dernedde, R.: Über eine Auswahlregel für die Lauf- und Leitschaufelzahl von Kreiselpumpen. KSB. Techn. Ber. 9 (1964)

    Google Scholar 

  28. Dörfler, P., Sick, M., Coutu, A.: Flow-Induced Pulsation and Vibrations in Hydroelectric Machinery. Springer, London (2013)

    Book  Google Scholar 

  29. Dubas, M.: Über die Erregung infolge der Periodizität von Turbomaschinen. Ing. Archiv. 54 413–426 (1984)

    Article  Google Scholar 

  30. Ehrich, F.F.: Handbook of Rotordynamics. McGraw Hill, New York (1992)

    Google Scholar 

  31. Ehrich, F.F., Childs, D.: Self-excited vibration in high-performance turbomachinery. Mech Engng. 106, 66–79 (May 1984)

    Google Scholar 

  32. Europump Leitfaden: Geräuschemission bei Kreiselpumpen. (2002)

    Google Scholar 

  33. Florjancic, D.: Entwicklung der Speisepumpen und grossen mehrstufigen Pumpen für die Wasserversorgung. Technical Review Sulzer. 4, 241–254 (1973)

    Google Scholar 

  34. Florjancic, S.: Annular seals of high energy centrifugal pumps: a new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Diss. ETH. Zürich (1990)

    Google Scholar 

  35. Försching, H.W.: Grundlagen der Aeroelastik. Springer, Berlin (1974)

    Google Scholar 

  36. Freese, H.D.: Querkräfte in axial durchströmten Drosselspalten. Pumpentagung, Karlsruhe (K6) (1978)

    Google Scholar 

  37. Gaffal, K.: Innovatives, umweltfreundliches und wirtschaftliches Speisepumpenkonzept erprobt. VGB. Kraftwerkstechnik. 73 223–230 (1993)

    Google Scholar 

  38. Graf, K.: Spaltströmungsbedingte Kräfte an berührungslosen Dichtungen von hydraulischen und thermischen Turbomaschinen. Diss. ETH Nr. 9319 (1991)

    Google Scholar 

  39. Greitzer, E.M.: The stability of pumping systems. ASME. J. Fluids. Engng. 103 (1981) 193-242

    Article  Google Scholar 

  40. Guinzburg, A.: Rotordynamic forces generated by discharge to suction leakage flows in centrifugal pumps. California Institute of Technology Report E249.14 (1992)

    Google Scholar 

  41. Gülich, J.F.: European Patent EP 0224764 B1 (1989)

    Google Scholar 

  42. Gülich, J.F., et al.: Pump vibrations excited by cavitation. IMechE Conf on Fluid Machinery, The Hague (1990)

    Google Scholar 

  43. Gülich, J.F., et al.: Rotor dynamic and thermal deformation tests of high-speed boiler feedpumps. EPRI Report GS-7405 (July 1991)

    Google Scholar 

  44. Gülich, J.F., Bolleter, U.: Pressure pulsations in centrifugal pumps. ASME. J. Vibr. Acoustics. 114, 272–279 (1992)

    Article  Google Scholar 

  45. Guo, S., Maruta, Y.: Experimental investigation on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers. JSME. Intl. J. 48(1), 136–143 (2005)

    Article  Google Scholar 

  46. Hartlen, R.T., et al.: Dynamic interaction between pump and piping system. AECL Seminar on acoustic pulsations in rotating machinery. Toronto (1993)

    Google Scholar 

  47. Heckl, M., Müller, H.A.: Taschenbuch der Technischen Akustik. Springer, Berlin (1975)

    Book  Google Scholar 

  48. Hergt, P., Krieger, P.: Radialkräfte in Leitradpumpen. KSB. Techn. Ber. 32–39 (1973)

    Google Scholar 

  49. Hergt, P., et al.: Fluid dynamics of slurry pump impellers. 8th Intl Conf Transport and Sedi-mentation of Solids, Prague, D2-1 (1995)

    Google Scholar 

  50. Höller, K.: in “25 Jahre ASTRÖ”. Aströ, Graz (1979)

    Google Scholar 

  51. Kaiser, T., Osman, R., Dickau, R.: Analysis Guide for Variable Frequency Drives Operated Centrifugal Pumps. Proc 24th Interntl Pump Users Symp, Texas A&M 81–106 (2008)

    Google Scholar 

  52. Kanki, H., et al.: Experimental research on the hydraulic excitation force on the pump shaft. ASME Paper 81-DET-71

    Google Scholar 

  53. Kaupert, K.A.: Unsteady flow fields in a high specific speed centrifugal impeller. Diss. ETH, Zürich (1997)

    Google Scholar 

  54. Kollmann, F.G.: Maschinenakustik. Grundlagen, Meßtechnik, Beeinflussung. 2. Aufl. Springer, Berlin (2000)

    Google Scholar 

  55. Krieger, P.: Wechselwirkungen von Laufrad und Gehäuse einer Einschaufelpumpe am Modell der instationären Strömung. Forsch. Ing. Wes. 54(6), 169–180 (1988)

    Article  Google Scholar 

  56. Kündig, P.: Gestufte Labyrinthdichtungen hydraulischer Maschinen. Experimentelle Untersuchung der Leckage, der Reibung und der stationären Kräfte. Diss. ETH. Nr. 10366 (1993)

    Google Scholar 

  57. Kurtze, G.: Physik und Technik der Lärmbekämpfung. Braun, Karlsruhe (1964)

    Google Scholar 

  58. Kwong, A.H.M., Dowling, A.P.: Unsteady flow in diffusers. ASME. J. Fluids. Engng. 116 843–847 (1994)

    Article  Google Scholar 

  59. Lucas, M.J., et al.: Handbook of the Acoustic Characteristics of Turbomachinery Cavities. ASME Press, New York (1997)

    Google Scholar 

  60. Luce, T.W., et al.: A numerical and LDV investigation of unsteady pressure fields in the vaneless space downstream of a centrifugal impeller. ASME FEDSM97-3327 (1997)

    Google Scholar 

  61. Makay, E., Barret, J.A.: Changes in hydraulic component geometries greatly increased power plant availability and reduced maintenance cost: case histories. 1st Intl. Pump. Symp., Houston (1984)

    Google Scholar 

  62. Marscher, W.D.: Subsynchronous vibration in boiler feedpumps due to stable response to hydraulic forces at part-load. Proc. IMechE. 202 167–175 (1988)

    Google Scholar 

  63. Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Diss. TU, Darm-stadt (2004)

    Google Scholar 

  64. Meschkat, S., Stoffel, B.: The Local Impeller Head at Different Circumferential Positions in a Volute Casing of a Centrifugal Pump in Comparison to the Characteristic of the Impeller Alone. 21st IAHR Symp on hydraulic machinery and systems, Lausanne (2002)

    Google Scholar 

  65. Naudascher, E., Rockwell, D.: Flow-Induced Vibrations. An Engineering Guide. Balkema, Rotterdam (1994)

    Google Scholar 

  66. Nordmann, R., et al.: Rotordynamic coefficients and leakage flow for smooth and grooved seals in turbopumps. Proceedings IFToMM Meeting, Tokyo (Sept 1986)

    Google Scholar 

  67. Offenhäuser, H.: Druckschwankungsmesssungen an Kreiselpumpen mit Leitrad. VDI. Ber. 193, 211–218 (1973)

    Google Scholar 

  68. Reinsch, K.H., Barutzki, F.: Erhöhung der Lebensdauer von Rohrleitungssystemen durch den Einsatz viskoser Dämpfer. Rohrleitungstechnik, 7. Auf., Vulkan-Verlag, Essen

    Google Scholar 

  69. Robinet, F., Gülich, J.F., Kaiser, T.: Vane pass vibrations—source, assessment and correction—a practical guide for centrifugal pumps, pp. 121–137. 16th. Intl. Pump. Users. Symp., Houston (1999)

    Google Scholar 

  70. Ross, D.: Mechanics of underwater noise. Pergamon Press (1976)

    Google Scholar 

  71. Rütten, F.: Large eddy simulation in 90°-pipe bend flows. J. of Turbulence. 2, 003 (2001)

    Google Scholar 

  72. Sano, T., et al.: Alternate blade stall and rotating stall in a vaned diffuser. JSME. Intnl. Ser. B. 45(4), 810–819 (2002)

    Google Scholar 

  73. Schneider, K.: Das Verhalten von Kreiselpumpen beim Auftreten von Druckwellen. Diss. TU, Stuttgart (1986)

    Google Scholar 

  74. Schwartz, R., Nelson, R.: Acoustic resonance phenomena in high energy variable speed centrifugal pumps, pp. 23–28. 1st. Intl. Pump. Symposium., Houston (1984)

    Google Scholar 

  75. Spirig, M.: Einfluß der Kammerströmung auf die strömungsbedingten Kräfte im endlich langen Spalt einer hydraulischen Labyrinthdichtung. Diss. ETH. Nr. 13288 (1999)

    Google Scholar 

  76. Storace, A.F., et al.: Unsteady flow and whirl-inducing forces in axial-flow compressors. ASME. J. Turbo. machinery. 123, 433–445 (July 2001)

    Article  Google Scholar 

  77. Storteig, E.: Dynamic characteristics and leakage performance of liquid annular seals in centrifugal pumps. Diss MTA-00-137 TU, Trondheim (2000)

    Google Scholar 

  78. Strub, R.A.: Pressure fluctuations and fatigue stresses in storage pumps and pump turbines. ASME paper No 63-AHGT-11 (1963)

    Google Scholar 

  79. Sudo, S.: Pumping plant noise reduction. Hitachi Rev. 29(5), 217–222 (1980)

    Google Scholar 

  80. Tanaka, H.: Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. IAHR. Symp. Belgrade, Beitrag U2 (1990)

    Google Scholar 

  81. Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME. J. Fluids. Engng. 119 775–781 (1997)

    Article  Google Scholar 

  82. Ubaldi, M., et al.: An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow. ASME. J. Turbomach. 118, 41–51 (1996)

    Article  Google Scholar 

  83. Verhoeven, J.: Unsteady hydraulic forces in centrifugal pumps. IMechE. Paper C348/88. (1988)

    Google Scholar 

  84. Warth, H.: Experimentelle Untersuchungen axial durchströmter Ringspalte von Hybridentlastungseinrichtungen. Diss TU Kaiserslautern, SAM Forschungsbericht Bd. 2 (2000)

    Google Scholar 

  85. Weaver, D.S.: Interaction of fluid flow and acoustic fields. AECL Seminar on acoustic pulsations in rotating machinery. Toronto (1993)

    Google Scholar 

  86. Weber, M.: Geräusch- und pulsationsarme Verbrennungsluftgebläse und deren Einfluß auf selbsterregte Brennkammerschwingungen. Diss. TU Kaiserslautern, SAM Forschungsbericht Bd 7 (2002)

    Google Scholar 

  87. Yedidiah, S.: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum (1974)

    Google Scholar 

  88. Yuasa, T., Hinata, T.: Fluctuating flow behind the impeller of a centrifugal pump. Bull. JSME. 22(174), 1746–1753 (1979)

    Google Scholar 

  89. Ziada, S.: Flow-excited resonances of piping systems containing side-branches: excitation mechanism, counter-measures and design guidelines. AECL Seminar on acoustic pulsations in rotating machi-nery. Toronto (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gülich, J. (2014). Noise and Vibrations. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40114-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40114-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40113-8

  • Online ISBN: 978-3-642-40114-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics