Skip to main content

Distance-Sensitive Planar Point Location

  • Conference paper
Algorithms and Data Structures (WADS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8037))

Included in the following conference series:

Abstract

Let \(\mathcal{S}\) be a connected planar polygonal subdivision with n edges and of total area 1. We present a data structure for point location in \(\mathcal{S}\) where queries with points far away from any region boundary are answered faster. More precisely, we show that point location queries can be answered in time \(O(1+\min(\log \frac{1}{\Delta_{p}}, \log n))\), where Δ p is the distance of the query point p to the boundary of the region containing p. Our structure is based on the following result: any simple polygon P can be decomposed into a linear number of convex quadrilaterals with the following property: for any point p ∈ P, the quadrilateral containing p has area \(\Omega(\Delta_{p}^2)\).

M. Roeloffzen and B. Speckmann were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 600.065.120 and 639.022.707, respectively. B. Aronov has been supported by grant No. 2006/194 from the U.S.-Israel Binational Science Foundation, by NSF Grants CCF-08-30691, CCF-11-17336, and CCF-12-18791, and by NSA MSP Grant H98230-10-1-0210.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for planar point location. ACM Trans. Algorithms 3, article 17 (2007)

    Google Scholar 

  2. Arya, S., Malamatos, T., Mount, D.M., Wong, K.C.: Optimal expected-case planar point location. SIAM J. Comput. 37, 584–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google Scholar 

  4. Bern, M.: Triangulations and mesh generation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 25. Chapman & Hall/CRC (2004)

    Google Scholar 

  5. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. of Computer and System Sciences 48(3), 384–409 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Discrete & Computational Geometry 14(1), 411–428 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computational Geometry 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Collette, S., Dujmović, V., Iacono, J., Langerman, S., Morin, P.: Entropy, triangulation, and point location in planar subdivisions. ACM Trans. Algorithms 8(3), 1–18 (2012)

    Article  MathSciNet  Google Scholar 

  9. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer (1987)

    Google Scholar 

  10. Fortune, S.: A fast algorithm for polygon containment by translation. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 189–198. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  11. Iacono, J.: Expected asymptotically optimal planar point location. Computational Geometry 29(1), 19–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iacono, J., Mulzer, W.: A static optimality transformation with applications to planar point location. Int. J. of Comput. Geom. and Appl. 22(4), 327–340 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3. Addison-Wesley (1998)

    Google Scholar 

  15. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18(3), 548–585 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. Journal 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  17. Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 34. Chapman & Hall/CRC (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aronov, B., de Berg, M., Roeloffzen, M., Speckmann, B. (2013). Distance-Sensitive Planar Point Location. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40104-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40103-9

  • Online ISBN: 978-3-642-40104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics