Skip to main content

Tight Bounds for Low Dimensional Star Stencils in the External Memory Model

  • Conference paper
Book cover Algorithms and Data Structures (WADS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8037))

Included in the following conference series:

Abstract

Stencil computations on low dimensional grids are kernels of many scientific applications including finite difference methods used to solve partial differential equations. On typical modern computer architectures such stencil computations are limited by the performance of the memory subsystem, namely by the bandwidth between main memory and the cache. This work considers the computation of star stencils, like the 5-point and 7-point stencil, in the external memory model. The analysis focuses on the constant of the leading term of the non-compulsory I/Os. Optimizing stencil computations is an active field of research, but so far, there has been a significant gap between the lower bounds and the performance of the algorithms. In two dimensions, matching constants for lower and upper bounds are provided closing a gap of 4. In three dimensions, the bounds match up to a factor of \(\sqrt{2}\) improving the known results by a factor of 2\(\sqrt{3}\sqrt{B}\), where B is the block (cache line) size of the external memory model. For higher dimensions n, the presented lower bounds improve the previously known by a factor between 4 and 6 leaving a gap of \(\sqrt[n-1]{n!} \thickapprox{{n} \over{e}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)

    MathSciNet  Google Scholar 

  2. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiprocessors. In: Proc. of SPAA 2008. ACM (2008)

    Google Scholar 

  3. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in numerical linear algebra. SIAM J. Matrix Analysis Appl. 32(3), 866–901 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communication costs of fast matrix multiplication. J. ACM 59(6), 32 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. J. Algorithms, 1–16 (1998)

    Google Scholar 

  6. Bollobás, B., Leader, I.: An isoperimetric inequality on the discrete torus. SIAM J. Discret. Math. 3, 32–37 (1990)

    Article  MATH  Google Scholar 

  7. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and performance modeling of stencil computations on modern microprocessors. SIAM Rev. 51(1), 129–159 (2009)

    Article  MATH  Google Scholar 

  8. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proc. of 19th Annual ICS 2005, ICS 2005, pp. 361–366. ACM (2005)

    Google Scholar 

  9. Frigo, M., Strumpen, V.: The memory behavior of cache oblivious stencil computations. J. Supercomput. 39(2), 93–112 (2007)

    Article  Google Scholar 

  10. Frumkin, M.A., Van der Wijngaart, R.F.: Tight bounds on cache use for stencil operations on rectangular grids. J. ACM 49, 434–453 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hong, J.-W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proceedings of STOC 1981, pp. 326–333. ACM, New York (1981)

    Google Scholar 

  12. Hupp, P., Jacob, R.: Tight bounds for low dimensional star stencils in the external memory model. CoRR, abs/1205.0606 (2012)

    Google Scholar 

  13. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026 (2004)

    Article  MATH  Google Scholar 

  14. Leopold, C.: An analytical evaluation of tiling for stencil codes with time loop. In: Proc. of the 16th IPDPS. IEEE Computer Society (2002)

    Google Scholar 

  15. Leopold, C.: On optimal locality of linear relaxation. In: Proc. Int. Symp. on Parallel and Distributed Computing and Network, IASTED, pp. 201–206 (2002)

    Google Scholar 

  16. Leopold, C.: Tight bounds on capacity misses for 3D stencil codes. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part I. LNCS, vol. 2329, pp. 843–852. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E.: The pochoir stencil compiler. In: Proceedings of SPAA 2011, pp. 117–128. ACM (2011)

    Google Scholar 

  18. Zeiser, T., Wellein, G., Nitsure, A., Iglberger, K., Rüde, U., Hager, G.: Introducing a parallel cache oblivious blocking approach for the lattice Boltzmann method. Progress in Computational Fluid Dynamics 8(1-4), 179–188 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hupp, P., Jacob, R. (2013). Tight Bounds for Low Dimensional Star Stencils in the External Memory Model. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40104-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40103-9

  • Online ISBN: 978-3-642-40104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics