Skip to main content

Localization in Three-Dimensional Wireless Sensor Networks

  • Chapter
  • First Online:
The Art of Wireless Sensor Networks

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

A wireless sensor network (WSN) is categorized as three-dimensional (3D) when the variation in the height of deployed sensor nodes is not negligible as compared to length and breadth of deployment field. Localization is one of the fundamental components of any wireless sensor application. A localization algorithm estimates the position of a node by using information provided/inferred from anchor beacons, reference nodes or neighbors connectivity. The effectiveness of a localization algorithm is usually determined in terms of accuracy, resilience to node failure, computational cost, messaging overhead, hardware constraints and deployment practicality. This survey overviews the major recent work done in the field of localization in 3D WSNs. The major contribution of this work is to present all the major 3D (generic, airborne, terrestrial and submerged) localization schemes in a single literature along with their relative strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.F. Akyildiz, D. Pompili, T. Melodia, Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Google Scholar 

  2. I. Amundson, X.D. Koutsoukos, A survey on localization for mobile wireless sensor networks, in Proceedings of the 2nd International Conference on Mobile Entity Localization and Tracking in GPS-Less Environments (MELT’09) (2009)

    Google Scholar 

  3. I. Amundson, X.D. Koutsoukos, A survey on localization for mobile wireless sensor networks, in Proceedings of the 2nd International Conference on Mobile Entity Localization and Tracking in GPS-Less Environments, MELT’09, ed. by R. Fuller, X.D. Koutsoukos (Springer, Berlin, 2009), pp. 235–254

    Google Scholar 

  4. P. Bahl, V.N. Padmanabhan, RADAR: an in-building RF-based user location and tracking system, in Proceedings of the IEEE INFOCOM’00, March 2000

    Google Scholar 

  5. J. Beutel, Geolocation in a picoradio environment, Master’s thesis, UC Berkeley, Department of Electrical Engineering and Computer Science, 120p, 1999

    Google Scholar 

  6. A. Boukerche, H.A. B.F. Oliveira, E. Nakamura, A.A.F. Loureiro, Localization systems for wireless sensor networks. IEEE Wirel. Commun., December 2007

    Google Scholar 

  7. N. Bulusu, J. Heidemann, V. Bychkovskiy, D. Estrin, Density-adaptive beacon placement algorithms for localization in ad hoc wireless networks, in IEEE Infocom 2002, June 2002

    Google Scholar 

  8. N. Bulusu, J. Heidemann, D. Estrin, GPS-less lowcost outdoor localization for very small devices. IEEE Wirel. Commun. 7(5), 28–34 (2000)

    Google Scholar 

  9. J. Caffery, G.L. Stuber, Subscriber location in CDMA cellular networks. IEEE Trans. Veh. Technol. 47, 406–416 (1998)

    Article  Google Scholar 

  10. M. Campbell, Intelligence in three dimensions: we live in a 3-d world, and so should computers. http://www.neptec.com/News2006/1Oct06-MilAero.html (2006)

  11. Y.T. Chan, K.C. Ho, A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Processing 42(8), 1905–1915 (1994)

    Article  MathSciNet  Google Scholar 

  12. T. Chance, A. Kleiner, J. Northcutt, The Autonomous Underwater Vehicle (AUV): A Cost-Effective Alternative to Deep-Towed Technology, 6th edn, Integrated Coastal Zone Management, 2000, pp. 65–69

    Google Scholar 

  13. Y.T. Chan, H.Y.C. Hang, P.C. Ching, Exact and approximate maximum likelihood localization algorithms. IEEE Trans. Veh. Technol. 55(1), 10–16 (Jan. 2006)

    Google Scholar 

  14. H. Chen, P. Huang, M. Martins, H. Cheung So, K. Sezaki, Novel centroid localization algorithm for three-dimensional wireless sensor networks, in 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM’08, vol., no., pp. 1–4, 12–14 Oct. 2008. doi:10.1109/WiCom.2008.841

  15. K. Chen, Y. Zhou, J. He, A localization scheme for underwater wireless sensor networks. Int. J. Adv. Sci. Technol. 4 (2009)

    Google Scholar 

  16. X. Cheng, H. Shu, Q. Liang, A range-difference based self positioning scheme for underwater acoustic sensor networks, in WASA ’07 Proceedings of the International Conference on Wireless Algorithms, Systems and Applications (2007)

    Google Scholar 

  17. X. Cheng, H. Shu, Q. Liang, D.H. Du, Silent positioning in underwater acoustic sensor networks, in Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, Quebec, Canada (2009)

    Google Scholar 

  18. W. Cheng, A.Y. Teymorian, L. Ma, X. Cheng, X. Lu, Z. Lu, Underwater localization in sparse 3d acoustic sensor networks, in Proceedings of IEEE INFOCOM, Phoenix, AZ, USA (2008), pp. 236–240

    Google Scholar 

  19. W. Cheng, A. Thaeler, X. Cheng, F. Liu, X. Lu, Z. Lu, Time-synchronization free localization in large scale underwater acoustic sensor networks, in 29th IEEE International Conference on Distributed Computing Systems Workshops, 2009. ICDCS Workshops’09, 22–26 June 2009, pp. 80–87

    Google Scholar 

  20. K.W. Cheung, H.C. So, W.K. Ma, Y.T. Chan, Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Processing 52(4), 1121–1130 (2004)

    Article  MathSciNet  Google Scholar 

  21. H.S.M. Coxeter, Introduction to Geometry (Wiley, New York, 1989)

    Google Scholar 

  22. J. Cui, Z. Zhou, A. Bagtzoglou, Scalable localization with mobility prediction for underwater sensor networks, in Proceedings of Second Workshop on Underwater networks (WuWNet), Montreal, Quebec, Canada (2007)

    Google Scholar 

  23. E. Doukhnitch, M. Salamah, E. Ozen, An efficient approach for trilateration in 3D positioning. Comput. Commun. 31(17), 4124–4129 (2008)

    Article  Google Scholar 

  24. E. Elnahrawy, X. Li, R.P. Martin, The limits of localization using signal strength: a comparative study, in Proceeding of Sensor and Ad Hoc Communications and Networks, IEEE SECON, October 2004, pp. 406–414

    Google Scholar 

  25. M. Erol, L. Vieira, A. Caruso, F. Paparella, M. Gerla, S. Oktug, Multi stage underwater sensor localization using mobile beacons, in Proceedings of the Second International Workshop on Under Water Sensors and Systems, Cap Esterel, France, August 2008, pp. 25–31

    Google Scholar 

  26. M. Erol, L. Vieira, M. Gerla, Auv-aided localization for underwater sensor networks, in Proceedings f the International Conference on Wireless Algorithms, Systems and Applications (WASA), Chicago, IL, USA (2007)

    Google Scholar 

  27. M. Erol, L. Vieira, M. Gerla, Localization with dive’n’rise(dnr) beacons for underwater acoustic sensor networks, in Proceedings of Second Workshop on Underwater Networks (WuWNet), Montreal, Quebec, Canada (2007), pp. 97–100

    Google Scholar 

  28. M. Erol-Kantarci, H.T. Mouftah, S. Oktug, A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 13(3), 487–502, Third Quarter 2011

    Google Scholar 

  29. P. Gober, A. Ziviani, P. Todorova, M. Dias de Amorim, P. Hunerberg, S. Fdida, Topology control and localization in wireless ad hoc and sensor networks. Ad Hoc Sens. Wirel. Netw. 1, 301–321 (2005)

    Google Scholar 

  30. I. Guvenc, C.-C. Chong, A survey on TOA based wireless localization and NLOS mitigation techniques, IEEE Commun. Surv. Tutor. 11(3), 107–124, 3rd Quarter 2009

    Google Scholar 

  31. G. Han, H. Xu, T.Q. Duong, J. Jiang, T. Hara, Localization algorithms of wireless sensor networks: a survey. J. Telecommun. Syst. (2011). doi:10.1007/s11235-011-9564-7

  32. A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, The anatomy of a context-aware application, in Proceedings of MOBICOM ‘99, Seattle, Washington (1999)

    Google Scholar 

  33. T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher, Range-free localization schemes for large scale sensor networks, in Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom ’03) (ACM, New York, 2003), pp. 81–95

    Google Scholar 

  34. T. He, C. Huang, B. Blum, J. Stankovic, T. Abdelzaher, Range-free localization schemes in large scale sensor networks, in MobiCom (2003)

    Google Scholar 

  35. J. Hightower, G. Boriello, R. Want, SpotON: an indoor 3D location sensing technology based on RF signal strength, University of Washington CSE, Report #2000-02-02, February 2000

    Google Scholar 

  36. http://groups.csail.mit.edu/drl/underwater_robotics/amour/amour.html

  37. http://www.aasn4ip.org.uk/

  38. http://www.mbari.org/aosn/

  39. http://www.nautronix.com

  40. M.T. Isik, O.B. Akan, A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 8(9), 4457–4463 (2009)

    Article  Google Scholar 

  41. J. Jaffe, C. Schurgers, Sensor networks of freely drifting autonomous underwater explorers, in Proceedings of the 1st ACM International Workshop on Underwater Networks (WUWNet ’06) (ACM, New York, 2006), pp. 93–96

    Google Scholar 

  42. J. Kong, J. Cui, D. Wu, M. Gerla, Building underwater adhoc networks and sensor networks for large scale real-time aquatic applications, in Proceedings of IEEE MILCOM, Atlantic City, NJ, USA (2005)

    Google Scholar 

  43. G.S. Kuruoglu, M. Erol, S. Oktug, Three dimensional localization in wireless sensor networks using the adapted multi-lateration technique considering range measurement errors, in GLOBECOM Workshops, 2009, IEEE, pp. 1–5, Nov. 30 2009–Dec. 4 2009

    Google Scholar 

  44. X. Lai, J. Wang, G. Zeng, Distributed positioning algorithm based on centroid of three-dimension graph for wireless sensor networks. Syst. Simul. Technol. 20(15), 4104–4111 (2008)

    Google Scholar 

  45. K. Langendoen, N. Reijers, in Distributed Localization in Wireless Sensor Networks: A Quantitative Comparison. Computer Networks (Elsevier), special issue on Wireless Sensor Networks, August 2003, pp. 374–387

    Google Scholar 

  46. W.A.N.G. Li, Z.H.A.N.G. Jing, C.A.O. Dun, A new 3-dimensional DV-hop localization algorithm. JCIS 8(6), 2463–2475 (2012)

    Google Scholar 

  47. H. Luo, Z. Guo, W. Dong, Y.Z.F. Hong, Ldb: localization with directional beacons for sparse 3d underwater acoustic sensor networks. J. Netw. 5(1) (2010)

    Google Scholar 

  48. H. Luo, Y. Zhao, Z. Guo, S. Liu, P. Chen, L.M. Ni, Udb: using directional beacons for localization in underwater sensor networks, in Proceedings 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS ’08), Melbourne, Victoria, Australia (2008), pp. 551–558

    Google Scholar 

  49. L. Lv, Y. Cao, X. Gao, H. Luo, in Three Dimensional Localization Schemes Based on Sphere Intersections in Wireless Sensor Network (Beijing Posts and Telecommunications University, Beijing, 2006), pp. 48–51

    Google Scholar 

  50. D.E. Manolakis, Efficient solution and performance analysis of 3-D position estimation by trilateration. IEEE Trans. Aerosp. Electron. Syst. 32(4), 1239–1248 (1996)

    Article  Google Scholar 

  51. G. Mao, B. Fidan, B.D.O. Anderson, Wireless sensor network localization techniques. Comput. Netw. 51, 2529–2553, 10 July 2007. doi:10.1016/j.comnet.2006.11.018

  52. S.T. Matale, A.M. Kasabe, Review of advance localization algorithms, ijarece sep 2012

    Google Scholar 

  53. D. Mirza, C. Schurgers, Collaborative localization for fleets of underwater drifters, in Proceedings of IEEE Oceans, Vancouver, BC (2007)

    Google Scholar 

  54. D. Mirza, C. Schurgers, Motion-aware self-localization for underwater networks, in Proceedings of Third ACM International Workshop on Underwater Networks, San Francisco, CA, USA (2008), pp. 51–58

    Google Scholar 

  55. D. Niculescu, B. Nath, Ad-hoc positioning system, in IEEE GlobeCom (2001)

    Google Scholar 

  56. D. Niculescu, B. Nath, in Ad Hoc Positioning System (APS) using AoA, INFOCOM’ 03, San Francisco, CA (2003)

    Google Scholar 

  57. A.K. Othman, A.E. Adams, C.C. Tsimenidis, Node discovery protocol and localization for distributed underwater acoustic networks, in Proceedings of the Adv. Int. Conf. on Telecommunications, Internet, Web Applications and Services (AICT-ICIW), Washington, DC, USA (2006), p. 93

    Google Scholar 

  58. C.-H. Ou, K.-F. Ssu, Sensor position determination with flying anchor in three dimensional wireless sensor networks, in IEEE Transactions on Mobile Computing, September 2008, pp. 1084–1097

    Google Scholar 

  59. A. Panwar, S.A. Kumar, Localization schemes in wireless sensor networks, in 2012 Second International Conference on Advanced Computing & Communication Technologies (ACCT), pp. 443–449, 7–8 January 2012

    Google Scholar 

  60. J. Partan, J. Kurose, B.N. Levine, A survey of practical issues in underwater networks, in WUWNet (2006)

    Google Scholar 

  61. N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero III, R.L. Moses, N.S. Correal, Locating the nodes. IEEE Signal Processing Magazine, July 2005

    Google Scholar 

  62. N. Patwari, R. O’Dea, Y. Wang, Relative location in wireless networks, in Proceedings of IEEE Veh. Tech. Conf. (VTC) (2001)

    Google Scholar 

  63. D. Pompili, T. Melodia, I.F. Akyildiz, Deployment analysis in underwater acoustic wireless sensor networks, in Proceedings of the 1st ACM International Workshop on Underwater Networks, WUWNet ’06, Los Angeles, CA, USA (ACM, New York, NY, 2006), pp. 48–55

    Google Scholar 

  64. N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The cricket location-support system, in Proceedings of MOBICOM ’00, New York, August 2000

    Google Scholar 

  65. J. Proakis, E. Sozer, J. Rice, M. Stojanovic, Shallow water acoustic networks. IEEE Commun. Mag. (2001), pp. 114–119

    Google Scholar 

  66. V. Ramadurai, M.L. Sichitiu, Localization in wireless sensor networks: a probabilistic approach, in Proceedings of ICWN 2003, Las Vegas, NV, June 2003, pp. 275–81

    Google Scholar 

  67. J. Rice, D. Green, Underwater acoustic communications and networks for US navy’s seaweb program, in Second International Conference on Sensor Technologies and Applications. IEEE, 2008, pp. 715–722

    Google Scholar 

  68. M. Salamah, E. Doukhnitch, An efficient algorithm for mobile objects localization. Int. J. Commun. Syst. 21 (3), 301–310 (2007)

    Google Scholar 

  69. C. Savarese, J.M. Rabaey, J.Beutel, Locationing in distributed ad-hoc wireless sensor network, in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 2001, pp. 2037–2040

    Google Scholar 

  70. A. Savvides, C.C. Han, M.B. Srivastava, Dynamic fine grained localization in ad-hoc networks of sensors, in Proceedings of MOBICOM ’01, 2001, Rome, Italy, July 2001

    Google Scholar 

  71. A. Savvides, C. Han, M. Strivastava, Dynamic fine-grained localization in ad-hoc networks of sensors, in Proceedings of ACM SIGMOBILE 2001, Rome, Italy, July 2001

    Google Scholar 

  72. A. Savvides, H. Park, M. Srivastava, The bits and flops of the n-hop multilateration primitive for node localization problems, in First ACM International Workshop on Wireless Sensor Networks and Application, September 2002

    Google Scholar 

  73. A. Savvides, H. Park, M.B. Srivastava, The n-hop multilateration primitive for node localization problems. Mob. Netw. Appl. 8(4), 443–451 (2003)

    Article  Google Scholar 

  74. Y. Shang, W. Ruml, Y. Zhang, M. Fromherz, Localization from mere connectivity, in ACM MobiHoc Annapolis, MD, June 2003, pp. 201–212

    Google Scholar 

  75. S. Shatara, X. Tan, E. Mbemmo, N. Gingery, S. Henneberger, Experimental investigation on underwater acoustic ranging for small robotic sh, in 2008 IEEE International Conference on Robotics and Automation. IEEE (2008)

    Google Scholar 

  76. G. Shen; R. Zetik, R.S. Thoma, Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment, in 5th Workshop on Positioning, Navigation and Communication, WPNC 2008, pp. 71–78, 27–27 March 2008. doi:10.1109/WPNC.2008.4510359

  77. D. Shin, S. Na, J. Kim, S. Baek, M. Song, A. Park, S. Korea, Development of a gps-based autonomous water pollution monitoring system using sh robots, in Proceedings of the 6th WSEAS International Conference on Computational intelligence, Man-Machine Systems and Cybernetics (World Scientific and Engineering Academy and Society (WSEAS), 2007)

    Google Scholar 

  78. J. Shu, L. Liu, Y. Chen, A novel three-dimensional localization algorithm in wireless sensor networks, wireless communications, networking and mobile computing, in Proceedings of 5th International Conference on Wireless Communications, (2009), pp. 24–29

    Google Scholar 

  79. S. Simic, S. Sastry, Distributed localization in wireless ad hoc networks, UC Berkeley, Tech. rep. UCB/ERL M02/26, 2002

    Google Scholar 

  80. E. Sozer, M. Stojanovic, J. Proakis, Underwater acoustic networks. IEEE J. Ocean. Eng. 25(1), 72–83 (2000)

    Article  Google Scholar 

  81. M. Stojanovic, in Acoustic (Underwater) Communications, ed by J.G. Proakis. Encyclopedia of Telecommunications (John Wiley and Sons, New York, 2003)

    Google Scholar 

  82. H.-P. Tan et al., A survey of techniques and challenges in underwater localization. Ocean Eng. 38(14), 1663–1676 (2011)

    Google Scholar 

  83. H.-P. Tan, A.F. Gabor, Z.A. Eu, W.K. G. Seah, A wide coverage positioning system (wps) for underwater localization, in Proceedings of IEEE International Conference on Communications (ICC), Cape Town, South, Africa, May 2010, pp. 1–5

    Google Scholar 

  84. X. Tan, J. Li, Cooperative positioning in underwater sensor networks. IEEE Trans. Signal Processing 58(11), 5860–5871 (2010)

    Article  MathSciNet  Google Scholar 

  85. A.Y. Teymorian, W. Cheng, L. Ma, X. Cheng, An underwater positioning scheme for 3d acoustic sensor networks, in Proceedings of the Second workshop on Underwater Networks (WuWNet), Montreal, Quebec, Canada (2007)

    Google Scholar 

  86. A.Y. Teymorian, W. Cheng, L. Ma, X. Cheng, X. Lu, Z. Lu, 3d underwater sensor network localization. IEEE Trans. Mob. Comput. 8(12), 1610–1621 (2009)

    Article  Google Scholar 

  87. F. Thomas, L. Ros, Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005)

    Article  MathSciNet  Google Scholar 

  88. H.L.V. Trees, Detection, Estimation, and Modulation Theory—Part 1 (Wiley, New York, 1968)

    Google Scholar 

  89. UnderWater Sensor Networks at BWN Laboratory, Georgia Institute of Technology, Available from http://www.ece.gatech.edu/research/labs/bwn/UWASN/

  90. Q. Wan, Y.N. Peng, An improved 3-dimensional mobile location method using volume measurements of tetrahedron. IEICE Trans. Commun. E85-B, 1817–1823 (2002)

    Google Scholar 

  91. S. Wang, H. Hu, Wireless Sensor Networks for Underwater Localization: A Survey, Technical Report: CES-521. University of Essex, Colchester CO4 3SQ, UK

    Google Scholar 

  92. M.K. Watfa, Practical applications and connectivity: algorithms in future wireless sensor networks. Int. J. Inf. Technol. 4, 18–28 (2007)

    Google Scholar 

  93. B.H. Wellenhoff, H. Lichtenegger, J. Collins, Global Positions System: Theory and Practice, 4th edn (Springer, Berlin, 1997)

    Google Scholar 

  94. P. Xie, J. Cui, L. Lao, Vbf: vector-based forwarding protocol for underwater sensor networks, in Proceedings of IFIP Networking, Portugal (2006)

    Google Scholar 

  95. V. Yadav, et al., Localization scheme for three dimensional wireless sensor networks using GS enabled mobile sensor nodes. Int. J. Next Gen. Netw. 1(1) (2009)

    Google Scholar 

  96. A. Youssef, M. Youssef, A taxonomy of localization schemes for wireless sensor networks, in The 2007 International Conference on Wireless Networks, ICWN, Nevada, US (2007), pp. 444–450

    Google Scholar 

  97. G. Yu, F. Yu, L. Feng, A three dimensional localization algorithm using a mobile anchor node under wireless channel, in International Joint Conference on Neural Networks (2008), pp. 477–483

    Google Scholar 

  98. G. Zanca, F. Zorzi, A. Zanella, M. Zorzi, Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks, in Proceedings of the Workshop on Real-World Wireless Sensor Networks (REALWSN ’08) (ACM, New York, 2008), pp. 1–5. doi:10.1145/1435473.1435475

  99. L. Zhang, X. Zhou, Q. Cheng, Landscape-3D: a robust localization scheme for sensor networks over complex 3D terrains, in Proceedings of 31st Annual IEEE Conference on Local Computer Networks (LCN) (2006), pp. 239–246

    Google Scholar 

  100. Y. Zhao, H. Wu, M. Jin, S. Xia, Localization in 3D surface sensor networks: challenges and solutions, in 2012 Proceedings IEEE INFOCOM, pp. 55–63, 25–30 March 2012 doi:0.1109/INFCOM.2012.6195798

  101. S. Zheng, L. Kai, Z.H. Zheng, Three dimensional localization algorithm based on nectar source localization model in wireless sensor network. Appl. Res. Comput. 25(8), 2512–2513 (2008)

    Google Scholar 

  102. Z. Zhou, J. Cui, S. Zhou, Localization for large-scale underwater sensor networks, in Proceedings of IFIP Networking, Atlanta, Georgia, USA, May, 2007, pp. 108–119

    Google Scholar 

  103. H. Zhou, H. Wu, S. Xia, M. Jin, N. Ding, A distributed triangulation algorithm for wireless sensor networks on 2D and 3D surface, in Proceedings of INFOCOM (2011)

    Google Scholar 

  104. Y. Zhou, B. Gu, J.C.K. Chen, H. Guan, An range-free localization scheme for large scale underwater wireless sensor networks. J. Shangai Jiaotong Univ. 14(5), 562–568 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the insightful comments of the anonymous reviewers which helped improve the quality and presentation of the paper significantly. This work is partially supported by the US National Science Foundation (NSF) grant 1054935 and 1224628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib M. Ammari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mansoor, U., Ammari, H.M. (2014). Localization in Three-Dimensional Wireless Sensor Networks. In: Ammari, H. (eds) The Art of Wireless Sensor Networks. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40066-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40066-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40065-0

  • Online ISBN: 978-3-642-40066-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics