Skip to main content

Coverage and Connectivity in 3D Wireless Sensor Networks

  • Chapter
  • First Online:
The Art of Wireless Sensor Networks

Part of the book series: Signals and Communication Technology ((SCT))

  • 2237 Accesses

Abstract

A wireless sensor network (WSN) is categorized as three-dimensional (3D) when variation in the height of deployed sensor nodes is not negligible as compared to length and breadth of deployment field. The fundamental problem in such 3D networks is to find an optimal way to deploy sensor nodes needed to maintain full (or targeted degree of) coverage of monitored volume and reliable connectivity as desired by network designers. The solution should yield lower bound on number of nodes needed to achieve full coverage and connectivity. However, optimizing coverage and connectivity in 3D WSNs comes with its inherent complexities and intrinsic design challenges. 3D WSNs are not only difficult to visualize but their analysis is also computationally intensive. This literature summarizes major work conducted in the domain of coverage and connectivity in 3D WSNs. It studies different placement strategies, fundamental characteristics, modeling schemes, analytical methods, limiting factors, and practical constraints dealing with coverage and connectivity in 3D WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerial common sensor (acs) (2007), http://www.globalsecurity.org/intell/systems/acs.htm

  2. K. Akkaya, A. Newell, Self-deployment of sensors for maximized coverage in underwater acoustic sensor networks. Comput. Commun. 32(7–10), 1233–1244, ISSN 0140-3664 (2009). doi:10.1016/j.comcom.2009.04.002

  3. I.F. Akyildiz, D. Pompili, T. Melodia, Underwater acoustic sensor networks: research challenges, Ad Hoc Netw. 3(3), 257–279, ISSN 1570-8705 (2005). doi:10.1016/j.adhoc.2005.01.004

  4. S.M.N. Alam, Z.J. Haas, Coverage and connectivity in three-dimensional networks. in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom ’06), (ACM, New York, 2006), pp. 346–357. doi:10.1145/1161089.1161128

  5. S.M.N. Alam, Z.J. Haas, Hierarchical and nonhierarchical three-dimensional underwater wireless sensor networks CoRR abs/1005.3073: (2010)

    Google Scholar 

  6. S.M.N. Alam, Z.J. Haas, Topology control and network lifetime in three-dimensional wireless sensor networks. Presented at CoRR, (2006)

    Google Scholar 

  7. S.M.N. Alam, Z.J. Haas, Topology control of three-dimensional underwater wireless sensor networks. Underw. Acoust. Sens. Netw. 45–69 (2010)

    Google Scholar 

  8. S.M.N. Alam, Z.J. Haas, Coverage and connectivity in three-dimensional underwater sensor networks. Wirel. Commun. Mob. Comput. 8, 995–1009 (2008). doi:10.1002/wcm.661

    Article  Google Scholar 

  9. H.M. Ammari, S.K. Das, A study of k-coverage and measures of connectivity in 3D wireless sensor networks. IEEE Trans. Comput. 59(2), 243–257 (2010). doi:10.1109/TC.2009.166

  10. H.M. Ammari, S.K. Das, Joint k-coverage and hybrid forwarding in duty-cycled three-dimensional wireless sensor networks. 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON ’08. pp. 170–178, (2008). doi:10.1109/SAHCN.2008.30

  11. H. M. Ammari, S. K. Das, Lecture Notes in Computer Science (LNCS). in Proceedings EWSN. Clustering-Based Minimum Energy m-Connected k-Covered Wireless Sensor Networks 4913, pp. 1–16 (2008)

    Google Scholar 

  12. H.M. Ammari, S.K. Das, Critical density for coverage and connectivity in three-dimensional wireless sensor networks using continuum percolation. IEEE Trans. Parallel Distrib. Syst. 20(6), 872–885 (2009). doi:10.1109/TPDS.2008.146

    Article  Google Scholar 

  13. AUV Laboratory at MIT Sea Grant, http://auvlab.mit.edu/

  14. X. Bai, S. Kumar, Z. Yun, D. Xuan, T.H. Lai, Deploying wireless sensors to achieve both coverage and connectivity. in Proceedings of ACM MobiHoc (2006)

    Google Scholar 

  15. X. Bai, C. Zhang, D. Xuan, J. Teng, W. Jia, Full-coverage and k-connectivity (k=14,6) three dimensional networks. IEEE INFOCOM 2009, pp. 388–396 (2009). doi:10.1109/INFCOM.2009.5061943

  16. X. Bai, C. Zhang, D. Xuan, J. Teng, W. Jia, Low-connectivity and full-coverage three dimensional wireless sensor networks. in Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing (MobiHoc ’09), (ACM, New York, 2009), pp. 145–154. http://doi.acm.org/10.1145/1530748.1530768

  17. S.A. Borbash, E.H. Jennings, Distributed topology control algorithm for multihop, wireless networks. in Proceedings of the IEEE International Joint Conference on Neural Networks pp. 355–360 (2002)

    Google Scholar 

  18. M. Campbell, Intelligence in three dimensions: we live in a 3-d world, and so should computers (2006), http://www.neptec.com/News2006/1Oct06-MilAero.html

  19. E. Cayirci, H. Tezcan, Y. Dogan, V. Coskun, Wireless sensor networks for underwater survelliance systems. Ad Hoc Netw. 4(4), 431–446, ISSN 1570-8705 (2006). doi:10.1016/j.adhoc.2004.10.008

  20. C.-Y. Chong, S.P. Kumar, Sensor networks: evolution, opportunities, and challenges. IEEE Proc. 91(8), 1247–1256 (2003). doi:10.1109/JPROC.2003.814918

    Article  Google Scholar 

  21. C-F. Huang, Y-C. Tseng, L-C. Lo, The coverage problem in three-dimensional wireless sensor networks. IEEE Global Telecommunications Conference, 2004. GLOBECOM ’04. 5, 3182–3186 (2004). doi:10.1109/GLOCOM.2004.1378938

  22. Sesh Commuri, Mohamed K. Watfa, Coverage strategies in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2(4), 333–353 (2006). doi:10.1080/15501320600719151

    Article  Google Scholar 

  23. J. Conway, S. Torquato, Tiling, packing, and covering with tetrahedra. Proc. Nat.l Acad. Sci. USA. (PNAS) 103(28), 10612–10617 (2006)

    Google Scholar 

  24. K. Day, The conditional node connectivity of the k-ary n-cube. J. Int. Netw. 5(1), 13–26 (2004)

    Article  Google Scholar 

  25. Encyclopedia Geometrica. 3D Reueaux. http://www.fastgeometry.com/Reuleaux/ConstantBreadth3DShapes.htm

  26. A. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks. IEEE Trans. Comput. 38(11), 1586–1591 (1989)

    Article  Google Scholar 

  27. C. Fang, P. Zhang, C. Fu, Z. Zhang, Coverage enhancement by using the mobility of mobile sensor nodes. Springer Science+Business Media, LLC (2012). doi:10.1007/s11042-012-1139-4

  28. M. Gardner, The Sixth Book of Mathematical Games from Scientific American (University of Chicago Press, Chicago, 1984)

    Google Scholar 

  29. A. Ghosh, S.K. Das, Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mobile Comput. 4(3), 303–334 (2008)

    Article  MathSciNet  Google Scholar 

  30. E.N. Gilbert, Random Plane Networks. J. SIAM 9(4), 533–543 (1961)

    MATH  Google Scholar 

  31. A. Goel, S. Rai, B. Krishnamachari, Proccedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC), pp. 580–586, Chicago, Illinois, June 13–15 (2004)

    Google Scholar 

  32. B. Grünbaum, G.C. Shephard, Tilings with Congruent Tiles. Bull. Amer. Math. Soc. 3, 951–973 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Gupta, P.R. Kumar, Internet in the sky: the capacity of three dimensional wireless networks. Comm. Inf. Syst. 1, 33–49 (2001)

    MATH  MathSciNet  Google Scholar 

  34. P. Hall, On continuum percolation. Ann. Probab. 13(4), 1250–1266 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Harary, Conditional Connectivity. Networks 13, 347–357 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  36. http://fiji.eecs.harvard.edu/Volcano/

  37. C. Huang, Y. Tseng, L. Lo, The coverage problem in three-dimensional wireless sensor networks. J. Int. Netw. 8(3), 209–227 (2007)

    Article  Google Scholar 

  38. A. Jawahar, S. Radha, S. Vadivelan, Connectivity-guaranteed hybrid topology management scheme for improving the operational lifetime of 3-dimensional wireless sensor networks. Int. J. Distrib. Sens. Netw. 2010, Article ID 547368, 11p (2010). doi:10.1155/2010/547368

  39. Z. Q. Jiang et al., Deployment with sampling coverage in three-dimensional wireless sensor networks. Appl. Mech. Mater. 43, 342 (2010). doi:10.4028/www.scientific.net/AMM.43.342

  40. M. Jin, G. Rong, H. Wu, L. Shuai, X. Guo, Optimal surface deployment problem in wireless sensor networks. in Proceedings of IEEE INFOCOM 2012. pp. 2345–2353 (2012). doi:10.1109/INFCOM.2012.6195622

  41. N.W. Johnson, Uniform Polytopes (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  42. C.C. Leroy, P. Stephen, A new equation for the accurate calculation of sound speed in all Oceans. J. acoust. Soc. Am. 124(5), 2774–2782 (2008)

    Article  Google Scholar 

  43. L. Liu, H. Ma, On coverage of wireless sensor networks for rolling terrains. IEEE Trans. Parallel Distrib. Syst. 23(1), 118–125 (2012). doi:10.1109/TPDS.2011.69

    Article  Google Scholar 

  44. S.S. Naik, M.J. Nene, Realization of 3D underwater wireless sensor networks and influence of ocean parameters on node location estimation. Int. J. Wirel. Mob. Netw. 4(2), 135 (2012)

    Article  Google Scholar 

  45. Ocean engineering at Florida Atlantic university, http://www.oe.fau.edu/research/ams.html

  46. J. Partan, J. Kurose, N. Levine, A survey of practical issues in underwater networks WUWNet (2006)

    Google Scholar 

  47. S. Poduri, S. Pattem, B. Krishnamachari, G.S. Sukhatme, Sensor Network Configuration and the Curse of Dimensionality. in Proceedings of Third IEEE Workshop Embedded Networked Sensors (EmNets) (2006)

    Google Scholar 

  48. D. Pompili, T. Melodia, I.F. Akyildiz, Deployment analysis in underwater acoustic wireless sensor networks. in Proceedings of the 1st ACM International Workshop on Underwater Networks (WUWNet ’06), (ACM, New York, 2006), pp. 48–55

    Google Scholar 

  49. D. Pompili, T. Melodia, I. F. Akyildiz, Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks. Ad Hoc Netw. 7(4), 778–790, ISSN 1570–8705 (2009). doi:10.1016/j.adhoc.2008.07.010

  50. J. Proakis, E. Sozer, J. Rice, M. Stojanovic, Shallow water acoustic networks. IEEE Commun. Mag. 39(11), 114–119 (2001)

    Article  Google Scholar 

  51. V. Ravelomanana, Extremal properties of three-dimensional sensor networks with applications. IEEE Trans. Mob. Comput. 3(3), 246–257 (2004). doi:10.1109/TMC.2004.23

    Article  Google Scholar 

  52. P. Santi, D.M. Blough, The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Trans. Mob. Comput. 2(1), 25–39 (2003)

    Article  Google Scholar 

  53. S. Shakkottai, R. Srikant, N. Shroff, Unreliable sensor grids: coverage, connectivity and diameter, Ad Hoc Networks

    Google Scholar 

  54. A. Goel, S. Rai, B. Krishnamachari, Monotone properties of random geometric graphs thresholds. Ann. Appl. Probab. 15(4), 2535–2552 (2005)

    Google Scholar 

  55. H. Steinhaus, Mathematical Snapshots, 3rd edn. (Oxford University Press, New York, 1969)

    MATH  Google Scholar 

  56. M. Stojanovic, acoustic (underwater) Communications, ed. by J.G. Proakis. Encyclopedia of Telecommunications, (John Wiley and Sons, Chichester, 2003)

    Google Scholar 

  57. H. Tezcan, E. Cayirci, V. Coskun, A distributed scheme for 3D space coverage in tactical underwater sensor networks. in , IEEE Military Communications Conference MILCOM 2004, 2, pp. 697–703 (2004). doi:10.1109/MILCOM.2004.1494881

  58. S. Torquato, Y. Jiao, Dense packings of polyhedra: platonic and archimedean solids Physical Review E - Statistical. Nonlinear Soft Matter Phys. 80(4), 041104 (2009). doi:10.1103/PhysRevE.80.041104

    Article  MathSciNet  Google Scholar 

  59. W. Tsujita, A. Yoshino, H. Ishida, T. Moriizumi, Gas sensor network for air-pollution monitoring. Sens. Actuat. B-Chem. 110(2), 304–311 (2005)

    Article  Google Scholar 

  60. UnderWater Sensor Networks at BWN Laboratory, Georgia institute of technology, http://www.ece.gatech.edu/research/labs/bwn/UWASN/

  61. K. Vasilescu, D. Kotay, M. Rus, P. Dunbabin, Corke, data collection, storage, and retrieval with an underwater sensor network, in SenSys ’05. in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, (ACM Press, New York, 2005), pp. 154–165

    Google Scholar 

  62. X. Wang, J. Wu, L. Guo, A k-coverage algorithm in three dimensional wireless sensor networks. in 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), pp. 1089–1093 (2010). doi:10.1109/ICBNMT.2010.5705257

  63. M.K. Watfa, S. Commuri, Optimal 3-dimensional sensor deployment strategy. in 3rd IEEE Consumer Communications and Networking Conference, 2006, 2, pp. 892–896 (2006). doi:10.1109/CCNC.2006.1593167

  64. M.K. Watfa, S. Commuri, The 3-Dimensional wireless sensor network coverage problem. in Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control ICNSC ’06, pp. 856–861(2006). doi:10.1109/ICNSC.2006.1673259

  65. M.K. Watfa, Practical applications and connectivity: algorithms in future wireless sensor networks. Int. J. Inf. Technol. 4, 18–28 (2007)

    Google Scholar 

  66. R. Wattenhofer, L. Li, P. Bahl, Y.M. Wang, A conebased distributed topology-control algorithm for wireless multi-hop networks. IEEE/ACM Trans. Netw. 13(1), 147–159 (2005)

    Article  Google Scholar 

  67. Weisstein, W. Eric , Open ball. From mathworld-A wolfram web resource. http://mathworld.wolfram.com/OpenBall.html

  68. Weisstein, W. Eric, Reuleaux tetrahedron. From mathworld-A wolfram web resource. http://mathworld.wolfram.com/ReuleauxTetrahedron.html

  69. Weisstein, W. Eric, Space-filling polyhedron."From mathworld-A wolfram web resource. http://mathworld.wolfram.com/Space-FillingPolyhedron.htm

  70. D. Wells, The Penguin Dictionary of Curious and Interesting Geometry (Penguin, London, 1991)

    MATH  Google Scholar 

  71. Z. Xiao, M. Huang, J. Shi, J. Yang, J. Peng, Full connectivity and probabilistic coverage in random deployed 3D WSNs. International conference on wireless communications and, signal processing, pp. 1–4 (2009). doi:10.1109/WCSP.2009.5371666

  72. X. Yang, K.G. Ong, W.R. Dreschel, K. Zeng, C.S. Mungle, C.A. Grimes, Design of a wireless sensor network for long-term, in-situ monitoring of aquatic environments. Sensors 2, 455–472 (2002)

    Article  Google Scholar 

  73. M. Younis, K. Akkaya, Strategies and techniques for node placement in wireless sensor networks: a survey, Ad Hoc Networks 6(4), pp. 621–655, ISSN 1570–8705 (2008). doi:10.1016/j.adhoc.2007.05.003

  74. C. Zhang, X. Bai, J. Teng, D. Xuan, W. Jia, Constructing low-connectivity and full-coverage three dimensional sensor networks. IEEE J. Sel. Areas Commun. 28(7), 984–993 (2010). doi:10.1109/JSAC.2010.100903

    Article  Google Scholar 

  75. M.-C. Zhao, J. Lei, M.-Y. Wu, Y. Liu, W. Shu, Surface coverage in wireless sensor networks IEEE INFOCOM 2009, 109–117 (2009). doi:10.1109/INFCOM.2009.5061912

    Google Scholar 

  76. Y. Zou, K. Chakrabarty, Sensor deployment and target localization in distributed sensor networks. ACM Trans. Embed. Comput. Syst. (TECS) 3(1), 61–69 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the insightful comments of the anonymous reviewers which helped improve the quality and presentation of the paper significantly. This work is partially supported by the US National Science Foundation (NSF) grant 1054935 and 1224628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib M. Ammari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mansoor, U., Ammari, H.M. (2014). Coverage and Connectivity in 3D Wireless Sensor Networks. In: Ammari, H. (eds) The Art of Wireless Sensor Networks. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40066-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40066-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40065-0

  • Online ISBN: 978-3-642-40066-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics