Advertisement

Chosen-IV Correlation Power Analysis on KCipher-2 and a Countermeasure

  • Takafumi Hibiki
  • Naofumi Homma
  • Yuto Nakano
  • Kazuhide Fukushima
  • Shinsaku Kiyomoto
  • Yutaka Miyake
  • Takafumi Aoki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7864)

Abstract

This paper presents a chosen-IV (Initial Vector) correlation power analysis on the international standard stream cipher KCipher-2 together with an effective countermeasure. First, we describe a power analysis technique which can reveal the secret key (initial key) of KCipher-2 and then evaluate the validity of the CPA with an experiment on an FPGA platform. This paper also proposes a countermeasure based on random masking techniques. The concept of the proposed countermeasure is to mask intermediate data which pass through the non-linear function part including integer addition, substitution functions, and internal registers L1 and L2. We design two types of masked integer adders and two types of masked substitution circuits in order to minimize circuit area and delay. The performance of the proposed method is evaluated through ASIC implementations on a 90-nm CMOS technology. In comparison to the design without a countermeasure, the circuit area and delay of the design with a countermeasure increase at most 1.5 and 2.6 times, respectively. The effectiveness of the countermeasure is also demonstrated through an experiment on the same FPGA platform.

Keywords

Clock Cycle Finite State Machine Initial Vector Stream Cipher Power Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Side-channel Attack Standard Evaluation BOard(SASEBO-GII), http://www.morita-tech.co.jp/SASEBO/en/board/sasebo-g2.html
  2. 2.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES–the advanced encryption standard. Springer (2002)Google Scholar
  5. 5.
    Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Fischer, W., Gammel, B., Kniffler, O., Velten, J.: Differential power analysis of stream ciphers. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 257–270. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Golic, J.: Techniques for random masking in hardware. IEEE Trans. Circuits and Systems 54(2), 291–300 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Henricksen, M., Yap, W.S., Yian, C.H., Kiyomoto, S., Tanaka, T.: Side-channel analysis of the K2 stream cipher. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 53–73. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Kiyomoto, S., Tanaka, T., Sakurai, K.: K2: A stream cipher algorithm using dynamic feedback control. In: Proc. SECRYPT, pp. 204–213 (2007)Google Scholar
  10. 10.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kogge, P., Stone, H.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Computers C-22(8), 786–793 (1973)Google Scholar
  12. 12.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked aes hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takafumi Hibiki
    • 1
  • Naofumi Homma
    • 1
  • Yuto Nakano
    • 2
  • Kazuhide Fukushima
    • 2
  • Shinsaku Kiyomoto
    • 2
  • Yutaka Miyake
    • 2
  • Takafumi Aoki
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendai-shiJapan
  2. 2.KDDI R&D Laboratories, Inc.SaitamaJapan

Personalised recommendations