Skip to main content

An Extrinsic Look at the Riemannian Hessian

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Abstract

Let f be a real-valued function on a Riemannian submanifold of a Euclidean space, and let \(\bar{f}\) be a local extension of f. We show that the Riemannian Hessian of f can be conveniently obtained from the Euclidean gradient and Hessian of \(\bar{f}\) by means of two manifold-specific objects: the orthogonal projector onto the tangent space and the Weingarten map. Expressions for the Weingarten map are provided on various specific submanifolds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absil, P.A., Boumal, N.: Low-rank matrix completion via trust-regions on the Grassmann manifold. Tech. Rep. UCL-INMA-2012.07, UCLouvain (2012)

    Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008), http://sites.uclouvain.be/absil/amsbook/

  3. Absil, P.A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22(1), 135–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Absil, P.A., Trumpf, J., Mahony, R., Andrews, B.: All roads lead to Newton: Feasible second-order methods for equality-constrained optimization. Tech. Rep. UCL-INMA-2009.024, UCLouvain (2009)

    Google Scholar 

  5. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chavel, I.: Riemannian geometry, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 98. Cambridge University Press, Cambridge (2006); a modern introduction

    Book  MATH  Google Scholar 

  7. Curtef, O., Dirr, G., Helmke, U.: Riemannian optimization on tensor products of Grassmann manifolds: Applications to generalized Rayleigh-quotients. SIAM J. Matrix Anal. Appl. 33(1), 210–234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, 3rd edn. Universitext. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  10. Helmke, U., Hüper, K., Trumpf, J.: Newton’s method on Grassmann manifolds, arXiv:0709.2205v2 (September 2007)

    Google Scholar 

  11. Hendriks, H., Landsman, Z.: Mean location and sample mean location on manifolds: asymptotics, tests, confidence regions. J. Multivariate Anal. 67(2), 227–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)

    MathSciNet  Google Scholar 

  13. Jiang, B., Dai, Y.H.: A framework of constraint preserving update schemes for optimization on stiefel manifold, arXiv:1301.0172 (2013)

    Google Scholar 

  14. Lee, J.M.: Introduction to smooth manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)

    Book  Google Scholar 

  15. Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106–135 (2005)

    Article  Google Scholar 

  16. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schulz, V.: A Riemannian view on shape optimization, arXiv:1203.1493 (2012)

    Google Scholar 

  18. Shalit, U., Weinshall, D., Chechik, G.: Online learning in the embedded manifold of low-rank matrices. J. of Mach. Learn. Res. 13, 429–458 (2013)

    MathSciNet  Google Scholar 

  19. Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Lara-Carrero, L., Lewowicz, J. (eds.) Proc. VII ELAM, Equinoccio, U. Simón Bolívar, Caracas, pp. 69–92 (1986)

    Google Scholar 

  20. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization (2011) (submitted)

    Google Scholar 

  21. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program (2012), doi:10.1007/s10107-012-0584-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Absil, P.A., Mahony, R., Trumpf, J. (2013). An Extrinsic Look at the Riemannian Hessian. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics