Skip to main content

NICE-OHMS—Frequency Modulation Cavity-Enhanced Spectroscopy—Principles and Performance

  • Chapter
Cavity-Enhanced Spectroscopy and Sensing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 179))

Abstract

Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a sensitive technique for detection of molecular species in gas phase. It is based on a combination of frequency modulation for reduction of noise and cavity enhancement for prolongation of the interaction length between the light and a sample. It is capable of both Doppler-broadened and sub-Doppler detection with absorption sensitivity down to the 10−12 and 10−14 Hz−1/2 cm−1 range, respectively. This chapter provides a thorough description of the basic principles and the performance of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ye, Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards. Ph.D. thesis, University of Colorado, Boulder, CO, 1997

    Google Scholar 

  2. J. Ye, L.S. Ma, J.L. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6–15 (1998)

    Article  ADS  Google Scholar 

  3. L.S. Ma, J. Ye, P. Dube, J.L. Hall, Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD. J. Opt. Soc. Am. B 16, 2255–2268 (1999)

    Article  ADS  Google Scholar 

  4. J. Ye, J.L. Hall, Absorption detection at the quantum limit: probing high-finesse cavities with modulation techniques, in Cavity-Enhanced Spectroscopies, ed. by R.D. van Zee, J.P. Looney (Academic Press, New York, 2002), pp. 83–127

    Google Scholar 

  5. A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential. Appl. Phys. B 92, 313–326 (2008)

    Article  ADS  Google Scholar 

  6. C. Ishibashi, H. Sasada, Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser. Jpn. J. Appl. Phys. 1(38), 920–922 (1999)

    Article  ADS  Google Scholar 

  7. C. Ishibashi, H. Sasada, Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum. J. Mol. Spectrosc. 200, 147–149 (2000)

    Article  ADS  Google Scholar 

  8. L. Gianfrani, R.W. Fox, L. Hollberg, Cavity-enhanced absorption spectroscopy of molecular oxygen. J. Opt. Soc. Am. B 16, 2247–2254 (1999)

    Article  ADS  Google Scholar 

  9. J. Bood, A. McIlroy, D.L. Osborn, Cavity-enhanced frequency modulation absorption spectroscopy of the sixth overtone band of nitric oxide. Proc. SPIE 4962, 89–100 (2003)

    Article  ADS  Google Scholar 

  10. J. Bood, A. McIlroy, D.L. Osborn, Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy. J. Chem. Phys. 124, 084311 (2006)

    Article  ADS  Google Scholar 

  11. M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared. Spectrochim. Acta A 60, 3457–3468 (2004)

    Article  ADS  Google Scholar 

  12. N.J. van Leeuwen, H.G. Kjaergaard, D.L. Howard, A.C. Wilson, Measurement of ultraweak transitions in the visible region of molecular oxygen. J. Mol. Spectrosc. 228, 83–91 (2004)

    Article  ADS  Google Scholar 

  13. N.J. van Leeuwen, A.C. Wilson, Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. J. Opt. Soc. Am. B 21, 1713–1721 (2004)

    Article  ADS  Google Scholar 

  14. F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range. J. Opt. Soc. Am. B 24, 1392–1405 (2007)

    Article  ADS  Google Scholar 

  15. F.M. Schmidt, A. Foltynowicz, W.G. Ma, T. Lock, O. Axner, Doppler-broadened fiber-laser-based NICE-OHMS—improved detectability. Opt. Express 15, 10822–10831 (2007)

    Article  ADS  Google Scholar 

  16. A. Foltynowicz, W.G. Ma, O. Axner, Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection. Opt. Express 16, 14689–14702 (2008)

    Article  ADS  Google Scholar 

  17. C.L. Bell, G. Hancock, R. Peverall, G.A.D. Ritchie, J.H. van Helden, N.J. van Leeuwen, Characterization of an external cavity diode laser based ring cavity NICE-OHMS system. Opt. Express 17, 9834–9839 (2009)

    Article  ADS  Google Scholar 

  18. C.L. Bell, J.P.H. van Helden, T.P.J. Blaikie, G. Hancock, N.J. van Leeuwen, R. Peverall, G.A.D. Ritchie, Noise-immune cavity-enhanced optical heterodyne detection of HO2 in the near-infrared range. J. Phys. Chem. A 116, 5090–5099 (2012)

    Article  Google Scholar 

  19. B.M. Siller, M.W. Porambo, A.A. Mills, B.J. McCall, Noise immune cavity enhanced optical heterodyne velocity modulation spectroscopy. Opt. Express 19, 24822–24827 (2011)

    Article  ADS  Google Scholar 

  20. A.A. Mills, B.M. Siller, M.W. Porambo, M. Perera, H. Kreckel, B.J. McCall, Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam. J. Chem. Phys. 135, 224201 (2011)

    Article  ADS  Google Scholar 

  21. B. McCall, B.M. Siller, Applications of NICE-OHMS to molecular spectroscopy, in Cavity-enhanced Spectroscopy and Sensing, ed. by G. Gianluca, H.P. Loock (Springer, Berlin, 2013)

    Google Scholar 

  22. J. Ye, T.W. Lynn (eds.), Applications of Optical Cavities in Modern Atomic, Molecular, and Optical Physics. Advances in Atomic Molecular, and Optical Physics, vol. 49, pp. 1–83 (2003)

    Google Scholar 

  23. B.A. Paldus, A.A. Kachanov, An historical overview of cavity-enhanced methods. Can. J. Phys. 83, 975–999 (2005)

    Article  ADS  Google Scholar 

  24. A. Foltynowicz, W.G. Ma, F.M. Schmidt, O. Axner, Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions. J. Opt. Soc. Am. B 25, 1156–1165 (2008)

    Article  ADS  Google Scholar 

  25. O. Axner, W.G. Ma, A. Foltynowicz, Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised. J. Opt. Soc. Am. B 25, 1166–1177 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Foltynowicz, W.G. Ma, F.M. Schmidt, O. Axner, Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit. J. Opt. Soc. Am. B 26, 1384–1394 (2009)

    Article  Google Scholar 

  27. A. Foltynowicz, I. Silander, O. Axner, Reduction of background signals from fiber-based NICE-OHMS. J. Opt. Soc. Am. B 28, 2797–2805 (2011)

    Article  ADS  Google Scholar 

  28. P. Ehlers, I. Silander, J. Wang, O. Axner, Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region. J. Opt. Soc. Am. B 29, 1305–1315 (2012)

    Article  Google Scholar 

  29. A. Foltynowicz, J.Y. Wang, P. Ehlers, O. Axner, Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime. Opt. Express 18, 18580–18591 (2010)

    Article  ADS  Google Scholar 

  30. J.Y. Wang, P. Ehlers, I. Silander, O. Axner, Dicke narrowing in the dispersion mode of detection and in noise-immune c avity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification. J. Opt. Soc. Am. B 28, 2390–2401 (2011)

    Article  Google Scholar 

  31. J.Y. Wang, P. Ehlers, I. Silander, J. Westberg, O. Axner, Speed-dependent Voigt dispersion lineshape function—applicable to techniques measuring dispersion signals. J. Opt. Soc. Am. B 29, 2971–2979 (2012)

    Article  ADS  Google Scholar 

  32. J.Y. Wang, P. Ehlers, I. Silander, O. Axner, Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry—experimental demonstation and validation of predicted line shape. J. Opt. Soc. Am. B 29, 2980–2989 (2012)

    Article  ADS  Google Scholar 

  33. W.G. Ma, A. Foltynowicz, O. Axner, Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions. J. Opt. Soc. Am. B 25, 1144–1155 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. G.C. Bjorklund, Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15–17 (1980)

    Article  ADS  Google Scholar 

  35. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transf. 60, 665–710 (1998)

    Article  ADS  Google Scholar 

  36. H.A. Kramers, La diffusion de la lumiere par les atomes. Atti. Congr. Int. Fis. Como. 2, 545–557 (1927)

    Google Scholar 

  37. R.L. Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 545–556 (1926)

    Article  ADS  Google Scholar 

  38. M. Sargent III., M. Scully, W.E. Lamb Jr., Laser Physics (Addison-Wesley, Reading, 1974)

    Google Scholar 

  39. W. Demtröder, Laser Spectroscopy, 2nd edn. (Springer, Berlin, 1996)

    Book  Google Scholar 

  40. A.G. Marshall, R.E. Bruce, Dispersion versus absorption (DISPA) lineshape analysis—effects of saturation, adjacent peaks, and simultaneous distribution in peak width and position. J. Magn. Res. 39, 47–54 (1980)

    ADS  Google Scholar 

  41. R.H. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953)

    Article  ADS  Google Scholar 

  42. L. Galatry, Simultaneous effect of Doppler and foreign gas broadening on spectral lines. Phys. Rev. 122, 1218–1223 (1961)

    Article  ADS  MATH  Google Scholar 

  43. S.G. Rautian, I.I. Sobelman, Effect of collisions on Doppler broadening of spectral lines. Sov. Phys. Usp. 9, 701–716 (1967)

    Article  ADS  Google Scholar 

  44. P.R. Berman, Speed-dependent collisional width and shift parameters in spectral profiles. J. Quant. Spectrosc. Radiat. Transf. 12, 1331–1342 (1972)

    Article  ADS  Google Scholar 

  45. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)

    Article  ADS  Google Scholar 

  46. P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals. Spectrochim. Acta B 56, 1277–1354 (2001)

    Article  ADS  Google Scholar 

  47. J. Westberg, J.Y. Wang, O. Axner, Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting. J. Quant. Spectrosc. Radiat. Transf. 113, 2049–2057 (2012)

    Article  ADS  Google Scholar 

  48. J. Westberg, J. Wang, O. Axner, Methodology for fast curve fitting to modulated Voigt dispersion lineshape functions. J. Quant. Spectrosc. Radiat. Transf. (2012). doi:10.1016/j.jqsrt.2013.08.008

    Google Scholar 

  49. P. Kluczynski, A.M. Lindberg, O. Axner, Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles. J. Quant. Spectrosc. Radiat. Transf. 83, 345–360 (2004)

    Article  ADS  Google Scholar 

  50. O. Axner, P. Kluczynski, A.M. Lindberg, A general non-complex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function. J. Quant. Spectrosc. Radiat. Transf. 68, 299–317 (2001)

    Article  ADS  Google Scholar 

  51. J. Westberg, P. Kluczynski, S. Lundqvist, O. Axner, Analytical expression for the nth Fourier coefficient of a modulated Lorentzian dispersion lineshape function. J. Quant. Spectrosc. Radiat. Transf. 112, 1443–1449 (2011)

    Article  ADS  Google Scholar 

  52. C.J. Borde, J.L. Hall, C.V. Kunasz, D.G. Hummer, Saturated absorption-line shape—calculation of transit-time broadening by a perturbation approach. Phys. Rev. A 14, 236–263 (1976)

    Article  ADS  Google Scholar 

  53. A. Foltynowicz, Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry. Ph.D. thesis, Umeå University, Umeå, Sweden, 2009

    Google Scholar 

  54. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  55. E.D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001)

    Article  ADS  Google Scholar 

  56. R.W. Fox, C.W. Oates, L.W. Hollberg, Stabilizing diode lasers to high-finesse cavities, in Cavity-Enhanced Spectroscopies, ed. by R.D. van Zee, J.P. Looney (Elsevier Science, New York, 2002)

    Google Scholar 

  57. R.G. DeVoe, R.G. Brewer, Laser frequency division and stabilization. Phys. Rev. A 30, 2827–2829 (1984)

    Article  ADS  Google Scholar 

  58. K.N. Crabtree, J.N. Hodges, B.M. Siller, A.J. Perry, J.E. Kelly, P.A. Jenkins II., B.J. McCall, Sub-Doppler mid-infrared spectroscopy of molecular ions. Chem. Phys. Lett. 551, 1–6 (2012)

    Article  ADS  Google Scholar 

  59. I. Silander, P. Ehlers, J. Wang, O. Axner, Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk. J. Opt. Soc. Am. B 29, 916–923 (2012)

    Article  ADS  Google Scholar 

  60. N.C. Wong, J.L. Hall, Servo control of amplitude-modulation in frequency-modulation spectroscopy—demonstration of shot-noise-limited detection. J. Opt. Soc. Am. B 2, 1527–1533 (1985)

    Article  ADS  Google Scholar 

  61. E.A. Whittaker, M. Gehrtz, G.C. Bjorklund, Residual amplitude-modulation in laser electro-optic phase modulation. J. Opt. Soc. Am. B 2, 1320–1326 (1985)

    Article  ADS  Google Scholar 

  62. P. Werle, R. Mucke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 57, 131–139 (1993)

    Article  ADS  Google Scholar 

  63. C. Ishibashi, M. Kourogi, K. Imai, B. Widiyatmoko, A. Onae, H. Sasada, Absolute frequency measurement of the saturated absorption lines of methane in the 1.66 μm region. Opt. Commun. 161, 223–226 (1999)

    Article  ADS  Google Scholar 

  64. K.N. Crabtree, J.N. Hodges, B.M. Siller, A.J. Perry, J.E. Kelly, P.A. Jenkins II., B.J. McCall, Sub-Doppler mid-infrared spectroscopy of molecular ions. Chem. Phys. Lett. 551, 1–6 (2012). doi:10.1016/j.cplett.2012.1009.1015

    Article  ADS  Google Scholar 

  65. P. Ehlers, I. Silander, J. Wang, O. Axner, Fiber-laser-based NICE-OHMS incorporating a fiber-coupled optical circulator (2013 submitted for publication)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council under the projects 621-2008-3674 and 621-2011-4216. The authors would also like to acknowledge the Kempe foundations, the Carl Trygger’s foundation, and Stiftelsen J. Gust. Richert for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ove Axner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Axner, O., Ehlers, P., Foltynowicz, A., Silander, I., Wang, J. (2014). NICE-OHMS—Frequency Modulation Cavity-Enhanced Spectroscopy—Principles and Performance. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_6

Download citation

Publish with us

Policies and ethics