Skip to main content

Fiber Loop Ringdown Sensors and Sensing

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 179))

Abstract

Fiber loop ringdown (FLRD) spectroscopy evolves directly from cavity ringdown spectroscopy, using a section of optical waveguide to replace the mirror-based cavity to achieve the multi-pass approach. Over the last several years, FLRD has gone far beyond the original applications of cavity ringdown spectroscopy to trace gas measurements to a broad range of applications in chemical, physical, and biological sensing. Using a uniform sensing scheme—measuring time to sense a quantity, FLRD is not only able to adopt a wide variety of sensing mechanisms for individual sensor fabrication, but is also uniquely suitable for large-scale, multi-function sensor network development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the text below FLRD means the fiber loop ringdown with a single loop only.

References

  1. G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, West Sussex, 2009)

    Google Scholar 

  2. H.-P. Loock, Ring-down absorption spectroscopy for analytical microdevices. TrAC, Trends Anal. Chem. 25, 655–664 (2006)

    Article  Google Scholar 

  3. H.-P. Loock, J.A. Barnes, G. Gagliardi, R. Li, R.D. Oleschuk, H. Wächter, Absorption detection using optical waveguide cavities. Can. J. Chem. 88, 401–410 (2010)

    Article  Google Scholar 

  4. C. Vallance, Innovations in cavity ringdown spectroscopy. New J. Chem. 97, 867–874 (2005)

    Article  Google Scholar 

  5. A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988)

    Article  ADS  Google Scholar 

  6. K.W. Busch, M.A. Busch (eds.), Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique. ACS Symposium Series, vol. 720 (American Chemical Society, Washington, 1999)

    Google Scholar 

  7. G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000)

    Article  Google Scholar 

  8. B.A. Paldus, A.A. Kachanov, An historical overview of cavity-enhanced methods. Can. J. Phys. 83, 975–999 (2005)

    Article  ADS  Google Scholar 

  9. M.I. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Cavity ring-down and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem., Sect. C, Phys. Chem. 101, 100–142 (2005)

    Article  Google Scholar 

  10. C. Wang, G.P. Miller, C.B. Winstead, Cavity ringdown laser absorption spectroscopy, in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, Chichester, 2008)

    Google Scholar 

  11. K.K. Lehmann, Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection. U.S. Patent No. 5,528,040, 1996

    Google Scholar 

  12. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, CW cavity ringdown spectroscopy. Chem. Phys. Lett. 264, 316–322 (1997)

    Article  ADS  Google Scholar 

  13. B.A. Paldus, J.S. Harris Jr., J. Martin, J. Xie, R.N. Zare, Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization. J. Appl. Phys. 82, 3199–3204 (1997)

    Article  ADS  Google Scholar 

  14. A.C.R. Pipino, J.W. Hudgens, R.E. Huie, Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity. Rev. Sci. Instrum. 68, 2978–2989 (1997)

    Article  ADS  Google Scholar 

  15. K.K. Lehmann, P. Rabinowitz, High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors. U.S. Patent No, 5,973,864, 1999

    Google Scholar 

  16. T. Von Lerber, M.W. Sigrist, Time constant extraction from noisy cavity ring-down signals. Chem. Phys. Lett. 353, 131–137 (2002)

    Article  ADS  Google Scholar 

  17. T. Von Lerber, M.W. Sigrist, Cavity ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing. Appl. Opt. 41, 3567–3575 (2002)

    Article  ADS  Google Scholar 

  18. D.E. Vogler, M.G. Muller, M.W. Sigrist, Fiber-optical cavity sensing of hydrogen diffusion. Appl. Opt. 42, 5413–5417 (2004)

    Article  ADS  Google Scholar 

  19. Z. Tong, A. Wright, T. McCormick, R. Li, R.D. Oleschuk, H.-P. Loock, Phase-shift fiber-loop ring-down spectroscopy. Anal. Chem. 76, 6594–6599 (2004)

    Article  Google Scholar 

  20. M. Gupta, H. Jiao, A. O’Keefe, Cavity-enhanced spectroscopy in optical fibers. Opt. Lett. 27, 1878–1880 (2002)

    Article  ADS  Google Scholar 

  21. C. Wang, Plasma-cavity ringdown spectroscopy (P-CRDS) for elemental and isotopic measurements. J. Anal. At. Spectrom. 22, 1347–1363 (2007)

    Article  Google Scholar 

  22. M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, H.-P. Loock, Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser. Appl. Phys. B 88, 131–135 (2007)

    Article  ADS  Google Scholar 

  23. G. Stewart, K. Atherton, H. Yu, B. Culshaw, An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements. Meas. Sci. Technol. 12, 843–849 (2001)

    Article  ADS  Google Scholar 

  24. R.S. Brown, I. Kozin, Z. Tong, R.D. Oleschuk, H.-P. Loock, Fiber-loop ring-down spectroscopy. J. Chem. Phys. 117, 10444–10447 (2002)

    Article  ADS  Google Scholar 

  25. P.B. Tarsa, K.K. Lehmann, P. Rabinowitz, A passive optical fiber resonator for cavity ringdown spectroscopy, in Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22 (2002)

    Google Scholar 

  26. Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples. Rev. Sci. Instrum. 74, 4818–4826 (2003)

    Article  ADS  Google Scholar 

  27. C. Wang, S.T. Scherrer, Fiber ringdown pressure sensors. Opt. Lett. 29, 352–354 (2004)

    Article  ADS  Google Scholar 

  28. C. Wang, S.T. Scherrer, Fiber loop ringdown for physical sensor development: pressure sensor. Appl. Opt. 43, 6458–6464 (2004)

    Article  ADS  Google Scholar 

  29. C.M. Rushworth, D. James, C.J.V. Jones, C. Vallance, Fabrication of an optical fiber reflective notch coupler. Opt. Lett. 36, 2952–2954 (2011)

    Article  ADS  Google Scholar 

  30. C.M. Rushworth, D. James, J.W.L. Lee, C. Vallance, Top notch design for fiber-loop cavity ring-down spectroscopy. Anal. Chem. 83, 8492–8500 (2011)

    Article  Google Scholar 

  31. R. Augustine, C. Krusen, C. Wang, W. Yan, System and method for controlling a light source for cavity ring-down spectroscopy. U.S. Patent No. 7,277,177 B2, 2007

    Google Scholar 

  32. C. Wang, S.P. Koirala, S.T. Scherrer, Y. Duan, C.B. Winstead, Diode laser microwave induced plasma cavity ringdown spectrometer: performance and perspective. Rev. Sci. Instrum. 75, 1305–1313 (2004)

    Article  ADS  Google Scholar 

  33. M. Kakui, Fiber lasers: pulsed fiber lasers reach 50 kW peak power at <100 ps pulse duration (2012). Available online: http://www.laserfocusworld.com/articles/2011/05/pulsed-fiber-lasers-reach-50-kw-peak-power-at-100-ps-pulse-duration.html

  34. P. Zalicki, R.N. Zare, Cavity ring-down spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708–2717 (1995)

    Article  ADS  Google Scholar 

  35. J.T. Hodges, J.P. Looney, R.D. van Zee, Laser bandwidth effects in quantitative cavity ring-down spectroscopy. Appl. Opt. 35, 4112–4116 (1996)

    Article  ADS  Google Scholar 

  36. K.K. Lehmann, H. Huang (eds.), Optimal Signal Processing in Cavity Ring-Down Spectroscopy in Frontiers of Molecular Spectroscopy (Elsevier, Oxford, 2008), pp. 623–658

    Google Scholar 

  37. C. Wang, M. Kaya, C. Wang, Evanescent field-fiber loop ringdown glucose sensor. J. Biomed. Opt. 17, 037004 (2012)

    Article  ADS  Google Scholar 

  38. C. Wang, Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives. Sensors 9, 7595–7621 (2009)

    Article  Google Scholar 

  39. H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.-P. Loock, Chemical sensing using fiber cavity ring-down spectroscopy. Sensors 10, 1716–1742 (2010)

    Article  Google Scholar 

  40. R. Li, H.-P. Loock, R.D. Oleschuk, Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy. Anal. Chem. 78, 5685–5692 (2006)

    Article  Google Scholar 

  41. C. Wang, Fiber ringdown temperature sensors. Opt. Eng. 44, 030503 (2005)

    Article  ADS  Google Scholar 

  42. N. Ni, C.C. Chan, L. Xia, P. Shum, Fiber cavity ring-down refractive index sensor. IEEE Photonics Technol. Lett. 20, 1351–1353 (2008)

    Article  ADS  Google Scholar 

  43. P.B. Tarsa, A.D. Wist, P. Rabinowitz, K.K. Lehmann, Single-cell detection by cavity ring-down spectroscopy. Appl. Phys. Lett. 85, 4523–4525 (2004)

    Article  ADS  Google Scholar 

  44. H.-P. Loock, P. Wentzell, Detection limits of chemical sensors: applications and misapplications. Sens. Actuators B 173, 157–163 (2012)

    Article  Google Scholar 

  45. C. Wang, Unpublished data (2004)

    Google Scholar 

  46. J.A. Barnes, R.S. Brown, A.H. Cheung, M.A. Dreher, G. Mackey, H.-P. Loock, Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy. Sens. Actuators B 148, 221–226 (2010)

    Article  Google Scholar 

  47. H. Li, D. Li, G. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 26, 1647–1657 (2004)

    Article  MathSciNet  Google Scholar 

  48. K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators A 82, 40–61 (2000)

    Article  Google Scholar 

  49. O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 76, 3269–3283 (2004)

    Article  Google Scholar 

  50. C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors. Chem. Rev. 108, 400–422 (2008)

    Article  Google Scholar 

  51. C.S. Chu, Y.L. Lo, High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes. Sens. Actuators B 124, 376–382 (2007)

    Article  Google Scholar 

  52. T.S. Yeh, C.S. Chu, Y.L. Lo, Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices. Sens. Actuators B 119, 701–707 (2006)

    Article  Google Scholar 

  53. J.R. Epstein, D.R. Walt, Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem. Soc. Rev. 32, 203–214 (2003)

    Article  Google Scholar 

  54. C.D. Geddes, J.R. Lakowicz (eds.), Glucose Sensing in Topics in Fluorescence Spectroscopy (Springer, New York, 2006), pp. 351–375

    Google Scholar 

  55. Z. Zhang, K.T.V. Grattan, A.W. Palmer, Fiber-optic high temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instrum. 63, 3869–3873 (1992)

    Article  ADS  Google Scholar 

  56. J. Mulrooney, J. Clifford, C. Fitzpatrick, E. Lewis, Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sens. Actuators A 136, 104–110 (2007)

    Article  Google Scholar 

  57. B. Alfeeli, G. Pickrell, A. Wang, Sub-nanoliter spectroscopic gas sensor. Sensors 6, 1308–1320 (2006)

    Article  Google Scholar 

  58. S. Tao, S. Gong, J.C. Fanguy, X. Hu, The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing. Sens. Actuators B 120, 724–731 (2007)

    Article  Google Scholar 

  59. W. Peng, G.R. Pickrell, F. Shen, A. Wang, Experimental investigation of optical waveguide-based multigas sensing. IEEE Photonics Technol. Lett. 16, 2317–2319 (2004)

    Article  ADS  Google Scholar 

  60. W. Yuan, H.P. Ho, C.L. Wong, S.K. Kong, C. Lin, Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sens. J. 7, 70–73 (2007)

    Article  Google Scholar 

  61. Ch. Stamm, R. Dangel, W. Lukosz, Biosensing with the integrated-optical difference interferometer: dual-wavelength operation. Opt. Commun. 153, 347–359 (1998)

    Article  ADS  Google Scholar 

  62. F. Shen, W. Peng, K.L. Cooper, G. Pickrell, A. Wang, UV-induced intrinsic Fabry-Perot interferometric fiber sensors. Proc. SPIE 5590, 47–56 (2004)

    Article  ADS  Google Scholar 

  63. K.A. Chang, H.J. Lim, C.B. Su, A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluid. Meas. Sci. Technol. 13, 1962–1965 (2002)

    Article  ADS  Google Scholar 

  64. R. Kashyap (ed.), Fiber Bragg Gratings (Academic Press, San Diego, 1999)

    Google Scholar 

  65. R.O. Claus, K.A. Murphy, A. Wang, R.G. May (eds.), High-Temperature Optical Fiber Sensors in Optical Fiber Smart Materials and Structures (Wiley, New York, 1995), pp. 537–562

    Google Scholar 

  66. Y. Zhu, K.L. Cooper, G.R. Pickrell, A. Wang, High-temperature fiber-tip pressure sensor. J. Lightwave Technol. 24, 861–869 (2006)

    Article  ADS  Google Scholar 

  67. W. Peng, G.R. Pickrell, A. Wang, High temperature fiber optic cubic-zirconia pressure sensor. Opt. Eng. 44, 124402 (2005)

    Article  ADS  Google Scholar 

  68. Z. Huang, W. Peng, J. Xu, G.R. Pickrell, A. Wang, Fiber temperature sensor for high-pressure environment. Opt. Eng. 44, 104401 (2005)

    Article  ADS  Google Scholar 

  69. Z. Huang, X. Chen, Y. Zhu, A. Wang, Wavefront splitting intrinsic Fabry-Perot fiber optic sensor. Opt. Eng. Lett. 44, 070501 (2005)

    Article  ADS  Google Scholar 

  70. F. Shen, A. Wang, Frequency estimation-based signal processing algorithm for white-light optical fiber Fabry-Perot interferometers. Appl. Opt. 44, 5206–5214 (2005)

    Article  ADS  Google Scholar 

  71. Y. Zhao, C. Yu, Y. Liao, Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement. Opt. Laser Technol. 36, 39–42 (2004)

    Article  ADS  Google Scholar 

  72. S. Pal, T. Sun, K.T.V. Grattan, S.A. Wade, S.F. Collins, G.W. Baxter, B. Dussardier, G. Monnom, Stain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination. Rev. Sci. Instrum. 75, 1327–1331 (2004)

    Article  ADS  Google Scholar 

  73. L. Van der Sneppen, F. Ariese, C. Gooijer, W. Ubachs, Liquid-phase and evanescent-wave ring-down spectroscopy in analytical chemistry. Annu. Rev. Anal. Chem. 2, 13–35 (2009)

    Article  Google Scholar 

  74. P.B. Tarsa, P. Rabinowitz, K.K. Lehmann, Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy. Chem. Phys. Lett. 383, 297–303 (2004)

    Article  ADS  Google Scholar 

  75. C. Wang, C. Herath, Fabrication and characterization of fiber loop ringdown evanescent field sensors. Meas. Sci. Technol. 21, 085205 (2010)

    Article  ADS  Google Scholar 

  76. C. Herath, C. Wang, M. Kaya, D. Chevalier, Fiber loop ringdown DNA and bacteria sensors. J. Biomed. Opt. 16, 050501 (2011)

    Article  ADS  Google Scholar 

  77. C. Wang, C. Herath, High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber. Opt. Lett. 35, 1629–1631 (2010)

    Article  ADS  Google Scholar 

  78. Z. Tian, S.S.-H. Yam, H.-P. Loock, Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 20, 1387–1389 (2008)

    Article  ADS  Google Scholar 

  79. Z. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greit, J.M. Fraser, H.-P. Loock, R.D. Oleschuk, Refractive index sensing with Mache-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 20, 626–628 (2008)

    Article  ADS  Google Scholar 

  80. W. Wong, W. Zhou, C.C. Chan, X. Dong, K.C. Leong, Cavity ringdown refractive index sensor using photonic crystal fiber interferometer. Sens. Actuators B 161, 108–113 (2011)

    Article  Google Scholar 

  81. C. Wang, A. Mbi, An alternative method to develop fiber grating temperature sensors using the fiber loop ringdown scheme. Meas. Sci. Technol. 17, 1741–1745 (2006)

    Article  ADS  Google Scholar 

  82. A. Mbi, Novel fiber optic temperature sensors: fiber grating loop ringdown. M.S. thesis, Mississippi State University, May 2006

    Google Scholar 

  83. M.B. Reid, M. Özcan, Temperature dependence of fiber optical Bragg grating at low temperature. Opt. Eng. 37, 237–240 (1998)

    Article  ADS  Google Scholar 

  84. K.T.V. Grattan, B.T. Meggitt (eds.), Optical Fiber Sensor Technology, vol. 2: Devices and Technology (Springer, Berlin, 1998)

    Google Scholar 

  85. M. Jiang, W. Zhang, Q. Zhang, Y. Liu, B. Liu, Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy. Opt. Commun. 283, 249–253 (2010)

    Article  ADS  Google Scholar 

  86. A.W. Synder, J.D. Love (eds.), Optical Waveguide Theory (Kluwer Academic, Norwell, 2000)

    Google Scholar 

  87. N.J. Harrick (ed.), Internal Reflection Spectroscopy (Wiley-Interscience, New York, 1967)

    Google Scholar 

  88. F. De Fornel (ed.), Evanescent Wave from Newtonian Optics to Atomic Optics (Springer, Berlin, 2001)

    Google Scholar 

  89. H. Matsuoka, Evanescent wave light scattering: a fusion of the evanescent wave and light scattering techniques to the study of colloids and polymers near the interface. Macromol. Rapid Commun. 22, 51–67 (2001)

    Article  Google Scholar 

  90. L. Xu, J.C. Fanguy, K. Soni, S. Tao, Optical fiber humidity sensor based on evanescent-wave scattering. Opt. Lett. 29, 1191–1193 (2004)

    Article  ADS  Google Scholar 

  91. P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett. 30, 1273–1275 (2005)

    Article  ADS  Google Scholar 

  92. M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes. Chem. Soc. Rev. 40, 207–220 (2011)

    Article  Google Scholar 

  93. C. Wang, N. Srivastava, B.A. Jones, R.B. Reese, A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope. Appl. Phys. B 92, 259–270 (2008)

    Article  ADS  Google Scholar 

  94. HITRAN 96 database. www.hitran.com

  95. G.A. Valaskovic, M. Hoton, G.H. Morrison, Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 34, 1215–1228 (1995)

    Article  ADS  Google Scholar 

  96. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  ADS  Google Scholar 

  97. T.A. Birks, Y.W. Li, The shape of fiber tapers. J. Lightwave Technol. 10, 432–438 (1992)

    Article  ADS  Google Scholar 

  98. B.S. Kawasaki, R.G. Lamont, Biconical-taper single-mode fiber coupler. Opt. Lett. 6, 327–329 (1981)

    Article  ADS  Google Scholar 

  99. C. Herath, C. Wang, High precision fiber loop ringdown chemical corrosion sensors. Earth Space 1609–1614 (2010)

    Google Scholar 

  100. J. Barnes, M. Dreher, K. Plett, R.S. Brown, C.M. Crudden, H.-P. Loock, Chemical sensor based on a long-period fibre grating modified by a functionalized polydimethylsiloxane coating. Analyst 133, 1541–1549 (2008)

    Article  ADS  Google Scholar 

  101. G. Stewart, K. Atherton, B. Culshaw, Cavity-enhanced spectroscopy in fiber cavities. Opt. Lett. 29, 442–444 (2004)

    Article  ADS  Google Scholar 

  102. N. Ni, C.C. Chan, Improving the measurement accuracy of CRD fibre amplified loop gas sensing system by using a digital LMS adaptive filter. Meas. Sci. Technol. 17, 2349–2354 (2006)

    Article  Google Scholar 

  103. N. Ni, C.C. Chan, T.K. Chuah, L. Xia, P. Shum, Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter. Meas. Sci. Technol. 19, 115203 (2008)

    Article  ADS  Google Scholar 

  104. C.C. Chan, N. Ni, J. Sun, Improving the detection accuracy in fiber Bragg grating-sensors by using a wavelet filter. J. Optoelectron. Adv. Mater. 9, 2376–2379 (2007)

    Google Scholar 

  105. H. Waechter, K. Bescherer, C.J. Dürr, R.D. Oleschuk, H.-P. Loock, 405 nm absorption detection in nanoliter volumes. Anal. Chem. 81, 9048–9054 (2009)

    Article  Google Scholar 

  106. M. Kaya, P. Sahay, C. Wang, Reproducibly reversible fiber loop ringdown water sensor embedded in concrete and grout for water monitoring. Sens. Actuators B 176, 803–810 (2012)

    Article  Google Scholar 

  107. C. Wang, Site testing of six fiber loop ringdown sensors for ISD structures monitoring. Report submitted to the U.S. Department of Energy, March 2012

    Google Scholar 

  108. C. Wang, Fiber ringdown pressure/force sensors. U.S. Patent No. 7,241,986, 2007

    Google Scholar 

  109. H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, G. Li, Multimode fiber ring-down pressure sensor. Microw. Opt. Technol. Lett. 49, 1698–1700 (2007)

    Article  Google Scholar 

  110. Y. Jiang, D. Yang, D. Tang, J. Zhao, Sensitivity enhancement of fiber loop cavity ring-down pressure sensor. Appl. Opt. 48, 6082–6087 (2009)

    Article  ADS  Google Scholar 

  111. Y. Jiang, J. Zhao, D. Yang, D. Tang, High-sensitivity pressure sensors based on mechanically induced long-period fiber gratings and fiber loop ring-down. Opt. Commun. 283, 3945–3948 (2010)

    Article  ADS  Google Scholar 

  112. D. Tang, D. Yang, Y. Jiang, J. Zhao, H. Wang, S. Jiang, Fiber loop ring-down optical fiber grating gas pressure sensor. Opt. Lasers Eng. 48, 1262–1265 (2010)

    Article  Google Scholar 

  113. P.B. Tarsa, D.M. Brzozowski, P. Rabinowitz, K.K. Lehmann, Cavity ringdown stain gauge. Opt. Lett. 29, 1339–1341 (2004)

    Article  ADS  Google Scholar 

  114. N. Ni, C.C. Chan, X.Y. Dong, J. Sun, P. Shum, Cavity ring-down long-period fibre grating strain sensor. Meas. Sci. Technol. 18, 3135–3138 (2007)

    Article  ADS  Google Scholar 

  115. H. Qiu, Y. Qiu, Z. Chen, B. Fu, G. Li, Strain measurement by fiber-loop ring-down spectroscopy and fiber mode converter. IEEE Sens. J. 8, 1180–1183 (2008)

    Article  Google Scholar 

  116. J. Gan, Y. Hao, Q. Ye, Z. Pan, H. Cai, R. Qu, Z. Fang, High spatial resolution distributed strain sensor based on linear chirped fiber Bragg grating and fiber loop ringdown spectroscopy. Opt. Lett. 36, 879–881 (2011)

    Article  ADS  Google Scholar 

  117. W. Zhou, W. Wong, C.C. Chan, L. Shao, X. Dong, Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Appl. Opt. 50, 3087–3092 (2011)

    Article  Google Scholar 

  118. S. Avino, J.A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J.R. Mester, C. Nicholaou, H.-P. Loock, Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 25, 25057–25065 (2011)

    Article  ADS  Google Scholar 

  119. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081–1084 (2010)

    Article  ADS  Google Scholar 

  120. P. Sahay, M. Kaya, C. Wang, Fiber loop ringdown sensors for potential real-time monitoring of cracks in concrete structures: an exploratory study. Sensors 13, 39–57 (2013)

    Article  Google Scholar 

  121. Wang, C. Fiber, Bragg grating loop ringdown method and apparatus. U.S. Patent No. 7,323,677, 2008

    Google Scholar 

  122. X.C. Li, F. Prinz, J. Seim, Thermal behavior of a metal embedded fiber Bragg grating sensor. Smart Mater. Struct. 10, 575–579 (2001)

    Article  ADS  Google Scholar 

  123. T. Mizunami, H. Tatehata, H. Kawashima, High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using teflon substrates. Meas. Sci. Technol. 12, 914–917 (2001)

    ADS  Google Scholar 

  124. K. Zhou, D.J. Webb, C. Mou, M. Farries, N. Hayes, Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser. IEEE Photonics Technol. Lett. 21, 1653–1655 (2009)

    Article  ADS  Google Scholar 

  125. D.K.C. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)

    Article  Google Scholar 

  126. H. Zhang, Y. Qiu, H. Li, A. Huang, H. Chen, G. Li, High-current-sensitivity all-fiber current sensor based on fiber loop architecture. Opt. Express 20, 18591–18599 (2012)

    Article  ADS  Google Scholar 

  127. H. Omrani, A. Dudelzak, H.-P. Loock, Fiber-coupled fluorescence and absorption spectroscopy for oil and fuel characterization. Appl. Ind. Opt. JW2A.1 (2012)

    Google Scholar 

  128. C. Rushworth, C. Vallance, Fibre loop cavity ring-down spectroscopy for the sensitive and selective detection of minute sample volumes of liquid explosives. Proc. SPIE 7838, 78380Y (2010)

    Article  ADS  Google Scholar 

  129. TigerOptics LLC, CRDS trace water analyzer, MTO-1000-H2O

    Google Scholar 

  130. G. Li, Y. Qiu, S. Chen, S. Liu, Z. Huang, Multichannel-fiber ringdown sensor based on time-division multiplexing. Opt. Lett. 33, 3022–3024 (2008)

    Article  Google Scholar 

  131. C. Wang, A. Mbi, Optical superposition in double fiber loop ringdown. Proc. SPIE 6377, 637702 (2006)

    Article  Google Scholar 

  132. Y. Gao, Y. Qiu, H. Chen, Y. Huang, G. Li, Four-channel fiber loop ring-down pressure sensor with temperature compensation based on neural networks. Microw. Opt. Technol. Lett. 52, 1796–1799 (2010)

    Article  Google Scholar 

  133. J. Shang, W. Zhang, S. Wei, H. Zhang, Two-channel fiber microcavity strain sensor based on fiber loop ring-down spectroscopy technology. Microw. Opt. Technol. Lett. 54, 1305–1309 (2012)

    Article  Google Scholar 

  134. S. Liu, Y. Yu, J. Zhang, S. Fei, A novel interrogation technique for time-division multiplexing fiber Bragg grating sensor arrays. Proc. SPIE 6781, 67812M (2007)

    ADS  Google Scholar 

  135. D.J.F. Cooper, T. Coroy, P.W.E. Smith, Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays. Appl. Opt. 16, 2643–2654 (2001)

    Article  ADS  Google Scholar 

  136. G.A. Cranch, P.J. Nash, Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM. J. Lightwave Technol. 19, 687–699 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work and highlights covered in this chapter bridge a period of 10 years of the emerging technique of FLRD. Many results from Mississippi State University included in this chapter came from the collaborative effort of former and current graduate students working in my research group. Their names and substantial scientific contributions are partially reflected in the references below. In particular, I want to thank Susan Scherrer, Armstrong Mbi, Chamini Herath, Malik (Burak) Kaya, Peeyush Sahay, and Haifa Alali.

Our FLRD research is currently supported by the National Science Foundation (#CMMI-0927539) and the US Department of Energy (#AC84132N through Savannah River Nuclear Solutions LLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuji Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, C. (2014). Fiber Loop Ringdown Sensors and Sensing. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_12

Download citation

Publish with us

Policies and ethics