Skip to main content

Cavity-Enhanced Spectroscopy on Silica Microsphere Resonators

  • Chapter
Cavity-Enhanced Spectroscopy and Sensing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 179))

Abstract

Microcavities are a powerful tool for chemical detection and sensing, but also to study chemical processes at interfaces. In most experiments the cavity mode spectrum is used to infer the chemical composition of the resonator medium and its immediate environment. For example, frequency shifts of cavity modes can be related to either cavity length changes or refractive index changes. Photon lifetime measurements, on the other hand, allow in principle for an independent measurement of the optical loss experienced by a cavity mode, but time-resolved cavity ring-down measurements are difficult due to the small dimensions of the cavity and the consequent short photon lifetimes (ring-down times). This chapter describes how phase-shift cavity ring-down spectroscopy can be adapted to extract the optical loss of a whispering gallery mode in a microresonator. By combining different phase-shift measurements of the total optical loss one can furthermore separate the contributions from intracavity loss due to absorption and scattering from the contributions of optical loss due to coupling to a light delivery waveguide.

The experimental focus is on the use of silica sphere microresonators. The frequency of the high-Q whispering gallery modes in these microspheres is strongly dependent on the size of the sphere whereas the intracavity loss is influenced by surface absorption and scattering. A sub-monolayer of ethylene diamine on a 300 μm sphere has the effect of, simultaneously, changing the resonance frequencies and the ring-down times of the whispering gallery modes. The absolute surface coverage can be extracted from the resonance frequency, and can be combined with the measurement of intracavity loss to determine the absolute absorption cross section of ethylene diamine at sub monolayer coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Armani et al., Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007)

    Article  ADS  Google Scholar 

  2. I. Teraoka et al., Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B, Opt. Phys. 20, 1937–1946 (2003)

    Article  ADS  Google Scholar 

  3. F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008)

    Article  Google Scholar 

  4. S. Arnold et al., Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 28, 272–274 (2003)

    Article  ADS  Google Scholar 

  5. S. Arnold et al., MicroParticle photophysics illuminates viral bio-sensing. Faraday Discuss. 137, 65–83 (2008)

    Article  ADS  Google Scholar 

  6. M.L. Gorodetsky et al., Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996)

    Article  ADS  Google Scholar 

  7. G. Farca et al., Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. Opt. Express 15, 17443–17448 (2007)

    Article  ADS  Google Scholar 

  8. A.M. Armani, K.J. Vahala, Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31, 1896–1898 (2006)

    Article  ADS  Google Scholar 

  9. A.C.R. Pipino, Ultrasensitive surface spectroscopy with a miniature optical resonator. Phys. Rev. Lett. 83, 3093–3096 (1999)

    Article  ADS  Google Scholar 

  10. R.S. Brown et al., Fiber-loop ring-down spectroscopy. J. Chem. Phys. 117, 10444–10447 (2002)

    Article  ADS  Google Scholar 

  11. D.K. Armani et al., Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  ADS  Google Scholar 

  12. T.J. Kippenberg, Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities. Ph.D. thesis, California Institute of Technology, 2004

    Google Scholar 

  13. R. Engeln et al., Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 262, 105–109 (1996)

    Article  ADS  Google Scholar 

  14. Z.G. Tong et al., Phase-shift fiber-loop ring-down spectroscopy. Anal. Chem. 76, 6594–6599 (2004)

    Article  Google Scholar 

  15. M.C. Chan, S.H. Yeung, High-resolution cavity enhanced absorption spectroscopy using phase-sensitive detection. Chem. Phys. Lett. 373, 100–108 (2003)

    Article  ADS  Google Scholar 

  16. A.M. Armani, Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007). Science 334, 1496 (2011)

    Article  Google Scholar 

  17. F. Vollmer et al., Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002)

    Article  ADS  Google Scholar 

  18. A.M. Armani et al., Ultra-high-Q microcavity operation in H2O and D2O. Appl. Phys. Lett. 87, 151118 (2005)

    Article  ADS  Google Scholar 

  19. R.W. Boyd, J.E. Heebner, Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)

    Article  ADS  Google Scholar 

  20. C. Chao, L.J. Guo, Polymer microring resonators fabricated by nanoimprint technique. J. Vac. Sci. Technol. B 20, 2862–2866 (2002)

    Article  Google Scholar 

  21. E. Krioukov et al., Integrated optical microcavities for enhanced evanescent-wave spectroscopy. Opt. Lett. 27, 1504–1506 (2002)

    Article  ADS  Google Scholar 

  22. T. Ling, L.J. Guo, A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity. Opt. Express 15, 17424–17432 (2007)

    Article  ADS  Google Scholar 

  23. D.W. Vernooy et al., High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998)

    Article  ADS  Google Scholar 

  24. I.M. White et al., Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319–1321 (2008)

    Article  ADS  Google Scholar 

  25. T.J. Kippenberg et al., Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett. 29, 1224–1226 (2004)

    Article  ADS  Google Scholar 

  26. S.I. Shopova et al., Microsphere whispering-gallery-mode laser using HgTe quantum dots. Appl. Phys. Lett. 85, 6101–6103 (2004)

    Article  ADS  Google Scholar 

  27. M. Cai et al., Fiber-optic add-drop device based on a silica microsphere whispering gallery mode system. IEEE Photonics Technol. Lett. 11, 686–687 (1999)

    Article  ADS  Google Scholar 

  28. B.E. Little et al., Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol. 17, 704–715 (1999)

    Article  ADS  Google Scholar 

  29. G.C. Righini et al., Whispering gallery mode microresonators: fundamentals and applications. Riv. Nuovo Cimento 34, 435–488 (2011)

    Google Scholar 

  30. I. Teraoka, S. Arnold, Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. J. Opt. Soc. Am. B, Opt. Phys. 23, 1381–1389 (2006)

    Article  ADS  Google Scholar 

  31. B.E. Little et al., Analytical theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol. 17, 704–715 (1999)

    Article  ADS  Google Scholar 

  32. C.C. Lam et al., Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. J. Opt. Soc. Am. B, Opt. Phys. 9, 1585–1592 (1992)

    Article  ADS  Google Scholar 

  33. A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering-gallery modes, part I: basics. IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006)

    Article  Google Scholar 

  34. M.L. Gorodetsky, V.S. Ilchenko, Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B, Opt. Phys. 16, 147–154 (1999)

    Article  ADS  Google Scholar 

  35. V.S. Ilchenko et al., Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. Opt. Lett. 24, 723–725 (1999)

    Article  ADS  Google Scholar 

  36. N. Dubreuil et al., Eroded monomode optical fiber for whispering-gallery mode excitation in fused silica microspheres. Opt. Lett. 20, 813–815 (1995)

    Article  ADS  Google Scholar 

  37. B.E. Little et al., Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits. Opt. Lett. 25, 73–75 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Grujic et al., Whispering gallery modes excitation in borosilicate glass microspheres by K+ ion-exchanged channel waveguide coupler. Proc. Soc. Photo-Opt. Instrum. Eng. 6101, 6101L-1–6101L-5 (2006)

    Google Scholar 

  39. S.M. Spillane et al., Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  40. A. Serpenguzel et al., Excitation of resonances of microspheres on an optical-fiber. Opt. Lett. 20, 654–656 (1995)

    Article  ADS  Google Scholar 

  41. G. Griffel et al., Morphology-dependent resonances of a microsphere-optical fiber system. Opt. Lett. 21, 695–697 (1996)

    Article  ADS  Google Scholar 

  42. J.P. Laine et al., Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres. IEEE Photonics Technol. Lett. 11, 1429–1430 (1999)

    Article  ADS  Google Scholar 

  43. H.S. Haddock et al., Fabrication of biconical tapered optical fibers using hydrofluoric acid. Mater. Sci. Eng. B 97, 87–93 (2003)

    Article  Google Scholar 

  44. E.J. Zhang et al., Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Opt. Express 18, 22593–22598 (2010)

    Article  ADS  Google Scholar 

  45. Y. Lu et al., Optimal conditions of coupling between the propagating mode in a tapered fiber and the given WG mode in a high-Q microsphere. Optik 112, 109–113 (2003)

    Article  ADS  Google Scholar 

  46. Y. Dumeige et al., Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers. J. Opt. Soc. Am. B, Opt. Phys. 25, 2073–2080 (2008)

    Article  ADS  Google Scholar 

  47. S. Trebaol et al., Transient effects in high-Q whispering gallery mode resonators: modelling and applications, in 13th International Conference on Transparent Optical Networks (2011)

    Google Scholar 

  48. J.A. Barnes et al., Loss determination in microsphere resonators by phase-shift cavity ring-down measurements. Opt. Express 16, 13158–13167 (2008)

    Article  ADS  Google Scholar 

  49. M.L. Gorodetsky et al., Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, Opt. Phys. 17, 1051–1057 (2000)

    Article  ADS  Google Scholar 

  50. I. Teraoka, S. Arnold, Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability. J. Appl. Phys. 102, 076109 (2007)

    Article  ADS  Google Scholar 

  51. Corning SMF-28 Optical Fiber Product Information (2002)

    Google Scholar 

  52. K.H. Guenther, P.G. Wierer, Surface-roughness assessment of ultrasmooth laser mirrors and substrates. Proc. Soc. Photo-Opt. Instrum. Eng. 401, 266–279 (1983)

    Google Scholar 

  53. G. Berden et al., Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000)

    Article  Google Scholar 

  54. M.D. Wheeler et al., Cavity ring-down spectroscopy. J. Chem. Soc. Faraday Trans. 94, 337–351 (1998)

    Article  Google Scholar 

  55. M. Mazurenka et al., Cavity ring-down and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem., Sect. C, Phys. Chem. 101, 100–142 (2005)

    Article  Google Scholar 

  56. A. O’Keefe, D. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988)

    Article  ADS  Google Scholar 

  57. A.C.R. Pipino et al., Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity. Rev. Sci. Instrum. 68, 2978–2989 (1997)

    Article  ADS  Google Scholar 

  58. M. Pollinger et al., Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 103, 053901 (1988)

    Article  ADS  Google Scholar 

  59. A.A. Savchenkov et al., Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator. Opt. Lett. 32, 497–499 (2007)

    Article  ADS  Google Scholar 

  60. J.M. Herbelin et al., Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. Appl. Opt. 19, 144–147 (1980)

    Article  ADS  Google Scholar 

  61. Z. Tong et al., Phase-shift fiber-loop ring-down spectroscopy. Anal. Chem. 76, 6594–6599 (2004)

    Article  Google Scholar 

  62. M.I. Cheema et al., Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy. Opt. Express 20, 9090–9098 (2012)

    Article  ADS  Google Scholar 

  63. M. Jakubinek et al., Configuration of ring-down spectrometers for maximum sensitivity. Can. J. Chem. 82, 873–879 (2004)

    Article  Google Scholar 

  64. K. Bescherer et al., Measurement of multi-exponential optical decay processes by phase-shift cavity ring-down. Appl. Phys. B, Lasers Opt. 96, 193–200 (2009)

    Article  ADS  Google Scholar 

  65. J.R. Lakowicz et al., Analysis of fluorescence decay kinetics from variable-frequency phase-shift and modulation data. Biophys. J. 46, 463–477 (1984)

    Article  ADS  Google Scholar 

  66. J.R. Lakowicz, Frequency-domain lifetime measurements, in Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Chapter  Google Scholar 

  67. T.J. Kippenberg et al., Modal coupling in traveling-wave resonators. Opt. Lett. 19, 1669–1671 (2002)

    Article  ADS  Google Scholar 

  68. J.A. Barnes et al., Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering. Phys. Rev. A, At. Mol. Opt. Phys. 87, 053843 (2013)

    Article  ADS  Google Scholar 

  69. K. Iwatsuki et al., Effect of Rayleigh backscattering in an optical passive ring-resonator gyro. Appl. Opt. 23, 3916–3924 (1984)

    Article  ADS  Google Scholar 

  70. M. Nakazawa, Rayleigh backscattering theory for single-mode optical fibers. J. Opt. Soc. Am. 73, 1175–1180 (1983)

    Article  ADS  Google Scholar 

  71. J. Rezac, Properties and applications of whispering-gallery mode resonances in fused silica microspheres. Ph.D. thesis, Oklahoma State University, 2002

    Google Scholar 

  72. Rapid market demand increase of ethylenediamine in China, in Focus on Surfactants (2005), p. 2

    Google Scholar 

  73. M. Buback, H.P. Vogele, FT-NIR Atlas (VCH, Weinheim, 1993)

    Google Scholar 

  74. E.D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001)

    Article  ADS  Google Scholar 

  75. V. Tsionsky, E. Gileadi, Use of the quartz crystal microbalance for the study of adsorption from the gas phase. Langmuir 10, 2830–2835 (1994)

    Article  Google Scholar 

  76. G. Adamovsky et al., Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings. Opt. Commun. 285, 766–773 (2012)

    Article  ADS  Google Scholar 

  77. M. Xu et al., Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy. Environ. Sci. Technol. 40, 1566–1572 (2006)

    Article  ADS  Google Scholar 

  78. J.D. Lambert, E.D.T. Strong, The dimerization of ammonia and amines. Proc. R. Soc. Lond. Ser. A 200, 566–572 (1950)

    Article  ADS  Google Scholar 

  79. L.V. Lanshina et al., Structure of liquid ethylenediamine according to data on molecular-scattering of light. J. Struct. Chem. 30, 684–687 (1989)

    Article  Google Scholar 

  80. M.T.S.R. Gomes et al., Detection of volatile amines using a quartz crystal with gold electrodes. Sens. Actuators B, Chem. 57, 261–267 (1999)

    Article  Google Scholar 

  81. V. Dong et al., Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes. Anal. Chem. 70, 4730–4735 (1998)

    Article  Google Scholar 

  82. C. Schmidt et al., Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds. Opt. Express 16, 6285–6301 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Photonics Research Ontario (Ontario Centres of Excellence) for financial support of this work. Contributions from the Canadian Institute for Photonic Innovations (CIPI), from the Natural Science and Engineering Research Council (NSERC) and Queen’s University are acknowledged by the Canadian researchers. GG also acknowledges financial support from the Italian Ministry for Education, University and Research (PON-SIMONA) and assistance from the Consiglio Nazionale delle Ricerche by the RSTL-project (cod. 3007) and the CNR Short-Term Mobility Program 2008.

Finally, we thank Zhaobing Tian for providing some of the tapered fiber waveguides, Saverio Avino for his help in setting up the PDH-coupling scheme, and Scott Yam, James Fraser, and Mark Wilson for their help in deriving Eq. (10.49) in Sect. 10.2.6.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnes, J.A., Gagliardi, G., Loock, HP. (2014). Cavity-Enhanced Spectroscopy on Silica Microsphere Resonators. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_10

Download citation

Publish with us

Policies and ethics