Formal Grammar pp 250-262 | Cite as

On the Generative Power of Discontinuous Lambek Calculus

  • Alexey Sorokin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8036)

Abstract

We prove that the class of languages which are generated by discontinuous Lambek grammars and do not contain the empty word is closed under intersection with regular languages. The size of the grammar for the intersection is linear with respect to the size of the initial discontinuous Lambek grammar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A., Ullman, J.: The theory of parsing, translation, and compiling. Prentice-Hall, Inc. (1972)Google Scholar
  2. 2.
    Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase-structure grammars. Bull. Res. Council Israel Sect. F 9F, 1–16 (1960)MathSciNetGoogle Scholar
  3. 3.
    Kanazawa, M., Salvati, S.: MIX is not a tree-adjoining language. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 666–674 (2012)Google Scholar
  4. 4.
    Kuznetsov, S.: Lambek grammars with one division and one primitive type. Logic Journal of the IGPL 20(1), 207–221 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Morrill, G., Valentín, O.: On calculus of displacement. In: Proceedings of the 10th International Workshop on Tree Adjoining Grammars and Related Formalisms, pp. 45–52 (2010)Google Scholar
  7. 7.
    Morrill, G., Valentín, O., Fadda, M.: The displacement calculus. Journal of Logic, Language and Information 20(1), 1–48 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Pentus, M.: Lambek grammars are context-free. In: Logic in Computer Science, Proceedings of the LICS 1993, pp. 429–433 (1993)Google Scholar
  9. 9.
    Seki, H., Matsumoto, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Sorokin, A.: Normal Forms for Multiple Context-Free Languages and Displacement Lambek Grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 319–334. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexey Sorokin
    • 1
  1. 1.Faculty of Mechanics and Mathematics, Moscow Institute of Physics and TechnologyMoscow State UniversityRussia

Personalised recommendations