Advertisement

Assessment of Renal Function

  • Aftab S. ChishtiEmail author
Chapter

Abstract

UA is the oldest method of diagnostic urine testing, first used more than 6,000 years ago [20]. Often neglected by the clinicians and poorly performed by laboratories, it is an inexpensive, readily available, and easy to interpret test with or without automated analyzers. It is an excellent indicator of a variety of renal functions, and some people consider it as a medical “poor man’s” biopsy of the kidney.

Keywords

Glomerular Filtration Rate Fractional Excretion Renal Tubular Cell Glomerular Filtration Rate Estimation Uric Acid Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arant BS Jr, Edelmann CM Jr et al (1972) The congruence of creatinine and inulin clearances in children: use of the Technicon AutoAnalyzer. J Pediatr 81(3):559–561CrossRefPubMedGoogle Scholar
  2. 2.
    Awad H, el-Safty I et al (2002) Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am J Med Sci 324(5):261–266CrossRefPubMedGoogle Scholar
  3. 3.
    Back SE, Krutzen E et al (1988) Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand J Clin Lab Invest 48(3):247–253CrossRefPubMedGoogle Scholar
  4. 4.
    Berry SM, Lecolier B et al (1995) Predictive value of fetal serum beta 2-microglobulin for neonatal renal function. Lancet 345(8960):1277–1278CrossRefPubMedGoogle Scholar
  5. 5.
    Bistarakis L, Voskaki I et al (1986) Renal handling of phosphate in the first six months of life. Arch Dis Child 61(7):677–681CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Bokenkamp A, Dieterich C et al (2001) Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am J Obstet Gynecol 185(2):468–475CrossRefPubMedGoogle Scholar
  7. 7.
    Bouvet Y, Bouissou F et al (2006) GFR is better estimated by considering both serum cystatin C and creatinine levels. Pediatr Nephrol 21(9):1299–1306CrossRefPubMedGoogle Scholar
  8. 8.
    Chan JCM, Williams DM et al (2002) Kidney failure in infants and children. Pediatr Rev 23(2):47–60CrossRefPubMedGoogle Scholar
  9. 9.
    Cobet G, Gummelt T et al (1996) Assessment of serum levels of alpha-1-microglobulin, beta-2-microglobulin, and retinol binding protein in the fetal blood. A method for prenatal evaluation of renal function. Prenat Diagn 16(4):299–305CrossRefPubMedGoogle Scholar
  10. 10.
    Counahan R, Chantler C et al (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51(11):875–878CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Dommergues M, Muller F et al (2000) Fetal serum beta2-microglobulin predicts postnatal renal function in bilateral uropathies. Kidney Int 58(1):312–316CrossRefPubMedGoogle Scholar
  12. 12.
    Fahimi D, Mohajeri S et al (2009) Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr Nephrol 24(12):2409–2412CrossRefPubMedGoogle Scholar
  13. 13.
    Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by Cystatin C formula? Pediatr Nephrol 18:981–985Google Scholar
  14. 14.
    Finney H, Newman DJ et al (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82(1):71–75CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Forster IC, Hernando N et al (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70(9):1548–1559CrossRefPubMedGoogle Scholar
  16. 16.
    Gallini F, Maggio L et al (2000) Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol 15(1–2):119–124CrossRefPubMedGoogle Scholar
  17. 17.
    Glick PL, Harrison MR et al (1985) Management of the fetus with congenital hydronephrosis II: prognostic criteria and selection for treatment. J Pediatr Surg 20(4):376–387CrossRefPubMedGoogle Scholar
  18. 18.
    Grubb A (1992) Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 38(Suppl 1):S20–S27PubMedGoogle Scholar
  19. 19.
    Grubb A, Nyman U et al (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 51(8):1420–1431CrossRefPubMedGoogle Scholar
  20. 20.
    Haber MH (1988) Pisse prophecy: a brief history of urinalysis. Clin Lab Med 8(3):415–430PubMedGoogle Scholar
  21. 21.
    Han WK, Bailly V et al (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62(1):237–244CrossRefPubMedGoogle Scholar
  22. 22.
    Hirsch R, Dent C et al (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 22(12):2089–2095CrossRefPubMedGoogle Scholar
  23. 23.
    Hogg RJ, Portman RJ et al (2000) Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on Proteinuria, Albuminuria, Risk, Assessment, Detection, and Elimination (PARADE). Pediatrics 105(6):1242–1249CrossRefPubMedGoogle Scholar
  24. 24.
    Ichimura T, Hung CC et al (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286(3):F552–F563CrossRefPubMedGoogle Scholar
  25. 25.
    Larsson A, Malm J et al (2004) Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 64(1):25–30CrossRefPubMedGoogle Scholar
  26. 26.
    Mathew OP, Jones AS et al (1980) Neonatal renal failure: usefulness of diagnostic indices. Pediatrics 65(1):57–60PubMedGoogle Scholar
  27. 27.
    Mishra J, Dent C et al (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365(9466):1231–1238CrossRefPubMedGoogle Scholar
  28. 28.
    Mishra J, Ma Q et al (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21(6):856–863CrossRefPubMedGoogle Scholar
  29. 29.
    Mitsnefes MM, Kathman TS et al (2007) Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol 22(1):101–108CrossRefPubMedGoogle Scholar
  30. 30.
    Morris RK, Quinlan-Jones E et al (2007) Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn 27(10):900–911CrossRefPubMedGoogle Scholar
  31. 31.
    Muller F, Bernard MA et al (1999) Fetal urine cystatin C as a predictor of postnatal renal function in bilateral uropathies. Clin Chem 45(12):2292–2293PubMedGoogle Scholar
  32. 32.
    Muller F, Dommergues M et al (1993) Fetal urinary biochemistry predicts postnatal renal function in children with bilateral obstructive uropathies. Obstet Gynecol 82(5):813–820PubMedGoogle Scholar
  33. 33.
    Mussap M, Fanos V et al (2002) Predictive value of amniotic fluid cystatin C levels for the early identification of fetuses with obstructive uropathies. BJOG 109(7):778–783CrossRefPubMedGoogle Scholar
  34. 34.
    Nako Y, Ohki Y et al (1999) Transtubular potassium concentration gradient in preterm neonates. Pediatr Nephrol 13(9):880–885CrossRefPubMedGoogle Scholar
  35. 35.
    Nava S, Bocconi L et al (1996) Aspects of fetal physiology from 18 to 37 weeks’ gestation as assessed by blood sampling. Obstet Gynecol 87(6):975–980CrossRefPubMedGoogle Scholar
  36. 36.
    Nolte S, Mueller B et al (1991) Serum alpha 1-microglobulin and beta 2-microglobulin for the estimation of fetal glomerular renal function. Pediatr Nephrol 5(5):573–577CrossRefPubMedGoogle Scholar
  37. 37.
    Odlind B, Hallgren R et al (1985) Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 27(1):9–16CrossRefPubMedGoogle Scholar
  38. 38.
    Parikh CR, Abraham E et al (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16(10):3046–3052CrossRefPubMedGoogle Scholar
  39. 39.
    Parikh CR, Jani A et al (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6(7):1639–1645CrossRefPubMedGoogle Scholar
  40. 40.
    Passwell JH, Modan M et al (1974) Fractional excretion of uric-acid in infancy and childhood – index of tubular maturation. Arch Dis Child 49(11):878–882CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Rehling M, Moller ML et al (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci (Lond) 66(5):613–619Google Scholar
  42. 42.
    Roberts KB (2011) Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 128(3):595–610CrossRefPubMedGoogle Scholar
  43. 43.
    Rodriguez-Soriano J, Vallo A (1988) Renal tubular hyperkalaemia in childhood. Pediatr Nephrol 2(4):498–509CrossRefPubMedGoogle Scholar
  44. 44.
    Sargent JD, Stukel TA et al (1993) Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr 123(3):393–397CrossRefPubMedGoogle Scholar
  45. 45.
    Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22(11):1839–1848CrossRefPubMedGoogle Scholar
  46. 46.
    Schwartz GJ, Munoz A et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Simerville JA, Maxted WC et al (2005) Urinalysis: a comprehensive review. Am Fam Physician 71(6):1153–1162PubMedGoogle Scholar
  48. 48.
    Simonsen O, Grubb A et al (1985) The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 45(2):97–101CrossRefPubMedGoogle Scholar
  49. 49.
    So NP, Osorio AV et al (2001) Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol 16(2):133–139CrossRefPubMedGoogle Scholar
  50. 50.
    Stapleton FB, Jones DP et al (1987) Acute renal failure in neonates: incidence, etiology and outcome. Pediatr Nephrol 1(3):314–320CrossRefPubMedGoogle Scholar
  51. 51.
    Stapleton FB, Linshaw MA et al (1978) Uric acid excretion in normal children. J Pediatr 92(6):911–914CrossRefPubMedGoogle Scholar
  52. 52.
    Stapleton FB, Nash DA (1983) A screening test for hyperuricosuria. J Pediatr 102(1):88–90CrossRefPubMedGoogle Scholar
  53. 53.
    Trachtman H, Christen E et al (2006) Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 21(7):989–994CrossRefPubMedGoogle Scholar
  54. 54.
    Vanderheyden T, Kumar S et al (2003) Fetal renal impairment. Semin Neonatol 8(4):279–289CrossRefPubMedGoogle Scholar
  55. 55.
    Zappitelli M, Parvex P et al (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48(2):221–230CrossRefPubMedGoogle Scholar
  56. 56.
    Zappitelli M, Washburn KK et al (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11(4):R84CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Pediatric Nephrology, Hypertension and Renal TransplantationKentucky Children’s Hospital, University of KentuckyLexingtonUSA

Personalised recommendations