Fluid and Electrolyte Physiology in the Fetus and Neonate

  • Isa F. Ashoor
  • Nilka de Jesús-González
  • Michael J. G. SomersEmail author


Body fluid distribution and composition in the fetus and neonate differ from what is found in older children and adults. In fact, during intrauterine and perinatal life and persisting into the early postnatal period, high water content characterizes body composition, with significant and dynamic changes then occurring in its distribution as the child ages and grows. Maintaining the appropriate body fluid balance at different developmental stages is critical for cell growth and differentiation and for organ formation and function. Accordingly, a host of unique regulatory mechanisms determine the distribution and composition of body fluids in the fetus and newborn and contribute to ongoing volume and biochemical homeostasis in early childhood. In the following chapter, the main aspects of fluid and electrolyte physiology in the fetus and neonate are reviewed, with particular emphasis on mechanisms regulating water, sodium, potassium, and the divalent ions.


Proximal Tubule Atrial Natriuretic Peptide Mineralocorticoid Receptor Total Body Water Distal Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ammar A, Roseau S, Butlen D (1992) Postnatal ontogenesis of vasopressin receptors in the rat collecting duct. Mol Cell Endocrinol 86(3):193–203PubMedGoogle Scholar
  2. 2.
    Aperia A, Larsson L (1984) Induced development of proximal tubular NaKATPase, basolateral cell membranes and fluid reabsorption. Acta Physiol Scand 121(2):133–141PubMedGoogle Scholar
  3. 3.
    Aperia A, Larsson L, Zetterstrom R (1981) Hormonal induction of Na-K-ATPase in developing proximal tubular cells. Am J Physiol 241(4):F356–F360PubMedGoogle Scholar
  4. 4.
    Ariceta G, Rodriguez-Soriano J, Vallo A (1995) Magnesium homeostasis in premature and full-term neonates. Pediatr Nephrol 9(4):423–427PubMedGoogle Scholar
  5. 5.
    Aronson PS (2006) Ion exchangers mediating Na+, HCO3 – and Cl− transport in the renal proximal tubule. J Nephrol 19(Suppl 9):S3–S10PubMedGoogle Scholar
  6. 6.
    Atkinson SA, Shah JK, McGee C, Steele BT (1988) Mineral excretion in premature infants receiving various diuretic therapies. J Pediatr 113(3):540–545PubMedGoogle Scholar
  7. 7.
    Balkovetz DF, Leibach FH, Mahesh VB, Devoe LD, Cragoe EJ Jr, Ganapathy V (1986) Na+-H+ exchanger of human placental brush-border membrane: identification and characterization. Am J Physiol 251(6 Pt 1):C852–C860PubMedGoogle Scholar
  8. 8.
    Barac-Nieto M, Corey H, Liu SM, Spitzer A (1993) Role of intracellular phosphate in the regulation of renal phosphate transport during development. Pediatr Nephrol 7(6):819–822PubMedGoogle Scholar
  9. 9.
    Bauer K, Bovermann G, Roithmaier A, Gotz M, Proiss A, Versmold HT (1991) Body composition, nutrition, and fluid balance during the first two weeks of life in preterm neonates weighing less than 1500 grams. J Pediatr 118(4 Pt 1):615–620PubMedGoogle Scholar
  10. 10.
    Beall MH, Wang S, Yang B, Chaudhri N, Amidi F, Ross MG (2007) Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 28(5–6):421–428. doi: 10.1016/j.placenta.2006.06.005 PubMedGoogle Scholar
  11. 11.
    Beck JC, Lipkowitz MS, Abramson RG (1991) Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles. J Clin Invest 87(6):2067–2076. doi: 10.1172/JCI115237 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na(+) + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347(6291):386–388. doi: 10.1038/347386a0 PubMedGoogle Scholar
  13. 13.
    Biemesderfer D, Rutherford PA, Nagy T, Pizzonia JH, Abu-Alfa AK, Aronson PS (1997) Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Physiol 273(2 Pt 2):F289–F299PubMedGoogle Scholar
  14. 14.
    Bierd TM, Kattwinkel J, Chevalier RL, Rheuban KS, Smith DJ, Teague WG, Carey RM, Linden J (1990) Interrelationship of atrial natriuretic peptide, atrial volume, and renal function in premature infants. J Pediatr 116(5):753–759PubMedGoogle Scholar
  15. 15.
    Bistritzer T, Berkovitch M, Rappoport MJ, Evans S, Arieli S, Goldberg M, Tavori I, Aladjem M (1999) Sodium potassium adenosine triphosphatase activity in preterm and term infants and its possible role in sodium homeostasis during maturation. Arch Dis Child Fetal Neonatal Ed 81(3):F184–F187PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bonilla-Felix M (2004) Development of water transport in the collecting duct. Am J Physiol Renal Physiol 287(6):F1093–F1101. doi: 10.1152/ajprenal.00119.2004 PubMedGoogle Scholar
  17. 17.
    Bonilla-Felix M, John-Phillip C (1994) Prostaglandins mediate the defect in AVP-stimulated cAMP generation in immature collecting duct. Am J Physiol 267(1 Pt 2):F44–F48PubMedGoogle Scholar
  18. 18.
    Bonilla-Felix M, Vehaskari VM, Hamm LL (1999) Water transport in the immature rabbit collecting duct. Pediatr Nephrol 13(2):103–107PubMedGoogle Scholar
  19. 19.
    Brace RA (1987) Fetal blood volume responses to fetal haemorrhage: autonomic nervous contribution. J Dev Physiol 9(2):97–103PubMedGoogle Scholar
  20. 20.
    Brace RA, Cheung CY (1987) Role of catecholamines in mediating fetal blood volume decrease during acute hypoxia. Am J Physiol 253(4 Pt 2):H927–H932PubMedGoogle Scholar
  21. 21.
    Brace RA, Moore TR (1991) Transplacental, amniotic, urinary, and fetal fluid dynamics during very-large-volume fetal intravenous infusions. Am J Obstet Gynecol 164(3):907–916PubMedGoogle Scholar
  22. 22.
    Brant SR, Bernstein M, Wasmuth JJ, Taylor EW, McPherson JD, Li X, Walker S, Pouyssegur J, Donowitz M, Tse CM et al (1993) Physical and genetic mapping of a human apical epithelial Na+/H+ exchanger (NHE3) isoform to chromosome 5p15.3. Genomics 15(3):668–672PubMedGoogle Scholar
  23. 23.
    Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17(4):163–171PubMedGoogle Scholar
  24. 24.
    Brooks HL, Sorensen AM, Terris J, Schultheis PJ, Lorenz JN, Shull GE, Knepper MA (2001) Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics. J Physiol 530(Pt 3):359–366PubMedCentralPubMedGoogle Scholar
  25. 25.
    Brown RW, Diaz R, Robson AC, Kotelevtsev YV, Mullins JJ, Kaufman MH, Seckl JR (1996) The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137(2):794–797PubMedGoogle Scholar
  26. 26.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367(6462):463–467. doi: 10.1038/367463a0 PubMedGoogle Scholar
  27. 27.
    Care AD (1991) The placental transfer of calcium. J Dev Physiol 15(5):253–257PubMedGoogle Scholar
  28. 28.
    Celsi G, Larsson L, Aperia A (1986) Proximal tubular reabsorption and Na-K-ATPase activity in remnant kidney of young rats. Am J Physiol 251(4 Pt 2):F588–F593PubMedGoogle Scholar
  29. 29.
    Cha JH, Kim YH, Jung JY, Han KH, Madsen KM, Kim J (2001) Cell proliferation in the loop of henle in the developing rat kidney. J Am Soc Nephrol 12(7):1410–1421PubMedGoogle Scholar
  30. 30.
    Cheek DB, Wishart J, MacLennan AH, Haslam R (1984) Cell hydration in the normally grown, the premature and the low weight for gestational age infant. Early Hum Dev 10(1–2):75–84PubMedGoogle Scholar
  31. 31.
    Chevalier RL (1993) Atrial natriuretic peptide in renal development. Pediatr Nephrol 7(5):652–656PubMedGoogle Scholar
  32. 32.
    Comline RS, Silver M (1972) The composition of foetal and maternal blood during parturition in the ewe. J Physiol 222(1):233–256PubMedCentralPubMedGoogle Scholar
  33. 33.
    Constantinescu A, Silver RB, Satlin LM (1997) H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol 272(2 Pt 2):F167–F177PubMedGoogle Scholar
  34. 34.
    Coulter DM (1984) Differing effects of prolactin on the water content of individual tissues in the rabbit pup at 72 h of age. Biol Neonate 46(3):131–138PubMedGoogle Scholar
  35. 35.
    Counillon L, Pouyssegur J (2000) The expanding family of eucaryotic Na(+)/H(+) exchangers. J Biol Chem 275(1):1–4PubMedGoogle Scholar
  36. 36.
    Counillon L, Touret N, Bidet M, Peterson-Yantorno K, Coca-Prados M, Stuart-Tilley A, Wilhelm S, Alper SL, Civan MM (2000) Na+/H+ and CI-/HCO3-antiporters of bovine pigmented ciliary epithelial cells. Pflug Arch 440(5):667–678Google Scholar
  37. 37.
    Damiano A, Zotta E, Goldstein J, Reisin I, Ibarra C (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22(8–9):776–781. doi: 10.1053/plac.2001.0717 PubMedGoogle Scholar
  38. 38.
    Dancis J, Kammerman S, Jansen V, Schneider H, Levitz M (1981) Transfer of urea, sodium, and chloride across the perfused human placenta. Am J Obstet Gynecol 141(6):677–681PubMedGoogle Scholar
  39. 39.
    Dancis J, Springer D (1970) Fetal homeostasis in maternal malnutrition: potassium and sodium deficiency in rats. Pediatr Res 4(4):345–351. doi: 10.1203/00006450-197007000-00005 PubMedGoogle Scholar
  40. 40.
    David L, Anast CS (1974) Calcium metabolism in newborn infants. The interrelationship of parathyroid function and calcium, magnesium, and phosphorus metabolism in normal, “sick,” and hypocalcemic newborns. J Clin Invest 54(2):287–296. doi: 10.1172/JCI107764 PubMedCentralPubMedGoogle Scholar
  41. 41.
    de Rouffignac C, Quamme G (1994) Renal magnesium handling and its hormonal control. Physiol Rev 74(2):305–322PubMedGoogle Scholar
  42. 42.
    Delivoria-Papadopoulos M, Battaglia FC, Meschia G (1969) A comparison of fetal versus maternal plasma colloidal osmotic pressure im man. Proc Soc Exp Biol Med 131(1):84–87PubMedGoogle Scholar
  43. 43.
    Dickerson JW, Widdowson EM (1960) Chemical changes in skeletal muscle during development. Biochem J 74:247–257PubMedCentralPubMedGoogle Scholar
  44. 44.
    Doucet A (1988) Function and control of Na-K-ATPase in single nephron segments of the mammalian kidney. Kidney Int 34(6):749–760PubMedGoogle Scholar
  45. 45.
    Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC (1994) Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 127(6 Pt 2):1907–1921PubMedGoogle Scholar
  46. 46.
    Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G (2001) Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol 184(3):313–319. doi: 10.1007/s00232-001-0098-x PubMedGoogle Scholar
  47. 47.
    Edelmann CM, Barnett HL, Troupkou V (1960) Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J Clin Invest 39:1062–1069. doi: 10.1172/JCI104121 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Flexner LB, Cowie DB et al (1948) The permeability of the human placenta to sodium in normal and abnormal pregnancies and the supply of sodium to the human fetus as determined with radioactive sodium. Am J Obstet Gynecol 55(3):469–480PubMedGoogle Scholar
  49. 49.
    Forrest JN Jr, Stanier MW (1966) Kidney composition and renal concentration ability in young rabbits. J Physiol 187(1):1–4PubMedCentralPubMedGoogle Scholar
  50. 50.
    Friedlander G, Amiel C (1994) Cellular mode of action of parathyroid hormone. Adv Nephrol Necker Hosp 23:265–279PubMedGoogle Scholar
  51. 51.
    Friedman PA (2000) Mechanisms of renal calcium transport. Exp Nephrol 8(6):343–350. doi:20688 [pii]PubMedGoogle Scholar
  52. 52.
    Friis-Hansen B (1961) Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 28:169–181PubMedGoogle Scholar
  53. 53.
    Friis-Hansen B (1971) Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 47(1):Suppl 2:264+PubMedGoogle Scholar
  54. 54.
    Friis-Hansen B (1983) Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl 305:7–11PubMedGoogle Scholar
  55. 55.
    Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272(23):14800–14804PubMedGoogle Scholar
  56. 56.
    Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361(6412):549–552. doi: 10.1038/361549a0 PubMedGoogle Scholar
  57. 57.
    Giapros VI, Cholevas VI, Andronikou SK (2004) Acute effects of gentamicin on urinary electrolyte excretion in neonates. Pediatr Nephrol 19(3):322–325. doi: 10.1007/s00467-003-1381-0 PubMedGoogle Scholar
  58. 58.
    Giebisch G (1998) Renal potassium transport: mechanisms and regulation. Am J Physiol 274(5 Pt 2):F817–F833PubMedGoogle Scholar
  59. 59.
    Gkika D, Hsu YJ, van der Kemp AW, Christakos S, Bindels RJ, Hoenderop JG (2006) Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice. J Am Soc Nephrol 17(11):3020–3027. ASN.2006060676 [pii], doi: 10.1681/ASN.2006060676 PubMedGoogle Scholar
  60. 60.
    Goetz KL (1988) Physiology and pathophysiology of atrial peptides. Am J Physiol 254(1 Pt 1):E1–E15PubMedGoogle Scholar
  61. 61.
    Gozzo ML, Noia G, Barbaresi G, Colacicco L, Serraino MA, De Santis M, Lippa S, Calla C, Caruso A, Mancuso S, Giardina B (1998) Reference intervals for 18 clinical chemistry analytes in fetal plasma samples between 18 and 40 weeks of pregnancy. Clin Chem 44(3):683–685PubMedGoogle Scholar
  62. 62.
    Grantham JJ, Burg MB (1966) Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211(1):255–259PubMedGoogle Scholar
  63. 63.
    Gruskay J, Costarino AT, Polin RA, Baumgart S (1988) Nonoliguric hyperkalemia in the premature infant weighing less than 1000 grams. J Pediatr 113(2):381–386PubMedGoogle Scholar
  64. 64.
    Guillery EN, Karniski LP, Mathews MS, Robillard JE (1994) Maturation of proximal tubule Na+/H+ antiporter activity in sheep during transition from fetus to newborn. Am J Physiol 267(4 Pt 2):F537–F545PubMedGoogle Scholar
  65. 65.
    Hadeed AJ, Leake RD, Weitzman RE, Fisher DA (1979) Possible mechanisms of high blood levels of vasopressin during the neonatal period. J Pediatr 94(5):805–808PubMedGoogle Scholar
  66. 66.
    Hammerman MR, Karl IE, Hruska KA (1980) Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone. Biochim Biophys Acta 603(2):322–335PubMedGoogle Scholar
  67. 67.
    Haycock GB (1993) The influence of sodium on growth in infancy. Pediatr Nephrol 7(6):871–875PubMedGoogle Scholar
  68. 68.
    Heimler R, Doumas BT, Jendrzejczak BM, Nemeth PB, Hoffman RG, Nelin LD (1993) Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr 122(1):110–114PubMedGoogle Scholar
  69. 69.
    Hohenauer L, Rosenberg TF, Oh W (1970) Calcium and phosphorus homeostasis on the first day of life. Biol Neonate 15(12):49–56PubMedGoogle Scholar
  70. 70.
    Holtback U, Aperia AC (2003) Molecular determinants of sodium and water balance during early human development. Semin Neonatol 8(4):291–299. doi: 10.1016/S1084-2756(03)00042-3 PubMedGoogle Scholar
  71. 71.
    Horster M (1978) Loop of Henle functional differentiation: in vitro perfusion of the isolated thick ascending segment. Pflug Arch 378(1):15–24Google Scholar
  72. 72.
    Hsu SC, Levine MA (2004) Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol 9(1):23–36. doi: 10.1016/j.siny.2003.10.002, S1084275603001593 [pii]PubMedGoogle Scholar
  73. 73.
    Hughes JL, Doughty IM, Glazier JD, Powell TL, Jansson T, D’Souza SW, Sibley CP (2000) Activity and expression of the Na(+)/H(+) exchanger in the microvillous plasma membrane of the syncytiotrophoblast in relation to gestation and small for gestational age birth. Pediatr Res 48(5):652–659. doi: 10.1203/00006450-200011000-00017 PubMedGoogle Scholar
  74. 74.
    Imbert-Teboul M, Chabardes D, Clique A, Montegut M, Morel F (1984) Ontogenesis of hormone-dependent adenylate cyclase in isolated rat nephron segments. Am J Physiol 247(2 Pt 2):F316–F325PubMedGoogle Scholar
  75. 75.
    Jansson T, Powell TL, Illsley NP (1999) Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta 20(2–3):155–160. doi: 10.1053/plac.1998.0371 PubMedGoogle Scholar
  76. 76.
    Johansson M, Glazier JD, Sibley CP, Jansson T, Powell TL (2002) Activity and protein expression of the Na+/H+ exchanger is reduced in syncytiotrophoblast microvillous plasma membranes isolated from preterm intrauterine growth restriction pregnancies. J Clin Endocrinol Metab 87(12):5686–5694PubMedGoogle Scholar
  77. 77.
    Jukarainen E (1971) Plasma magnesium levels during the first five days of life. Acta Paediatr Scand Suppl 222:1–58PubMedGoogle Scholar
  78. 78.
    Karimu AL, Burton GJ (1994) The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br J Obstet Gynaecol 101(1):57–63PubMedGoogle Scholar
  79. 79.
    Kim YH, Kim DU, Han KH, Jung JY, Sands JM, Knepper MA, Madsen KM, Kim J (2002) Expression of urea transporters in the developing rat kidney. Am J Physiol Renal Physiol 282(3):F530–F540. doi: 10.1152/ajprenal.00246.2001 PubMedGoogle Scholar
  80. 80.
    Knepper MA, Nielsen S, Chou CL, DiGiovanni SR (1994) Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol 14(4):302–321PubMedGoogle Scholar
  81. 81.
    Kovacs CS, Kronenberg HM (1997) Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 18(6):832–872PubMedGoogle Scholar
  82. 82.
    Lajeunesse D, Brunette MG (1988) Sodium gradient-dependent phosphate transport in placental brush border membrane vesicles. Placenta 9(2):117–128PubMedGoogle Scholar
  83. 83.
    Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245(1):F15–F21PubMedGoogle Scholar
  84. 84.
    Linderkamp O (1982) Placental transfusion: determinants and effects. Clin Perinatol 9(3):559–592PubMedGoogle Scholar
  85. 85.
    Liu H, Koukoulas I, Ross MC, Wang S, Wintour EM (2004) Quantitative comparison of placental expression of three aquaporin genes. Placenta 25(6):475–478. doi: 10.1016/j.placenta.2003.10.008 PubMedGoogle Scholar
  86. 86.
    Liu H, Wintour EM (2005) Aquaporins in development – a review. Reprod Biol Endocrinol 3:18. doi: 10.1186/1477-7827-3-18 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Liu W, Morimoto T, Kondo Y, Iinuma K, Uchida S, Imai M (2001) “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int 60(2):680–693. doi: 10.1046/j.1523-1755.2001.060002680.x PubMedGoogle Scholar
  88. 88.
    Lorenz JM (1997) Assessing fluid and electrolyte status in the newborn. Natl Acad Clin Biochem Clin Chem 43(1):205–210Google Scholar
  89. 89.
    Lorenz JM, Kleinman LI, Markarian K (1997) Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr 131(1 Pt 1):81–86. doi:S002234769700262X [pii]PubMedGoogle Scholar
  90. 90.
    Macknight AD, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57(3):510–573PubMedGoogle Scholar
  91. 91.
    Mahendran D, Byrne S, Donnai P, D’Souza SW, Glazier JD, Jones CJ, Sibley CP (1994) Na+ transport, H+ concentration gradient dissipation, and system A amino acid transporter activity in purified microvillous plasma membrane isolated from first-trimester human placenta: comparison with the term microvillous membrane. Am J Obstet Gynecol 171(6):1534–1540PubMedGoogle Scholar
  92. 92.
    Malone TA (1991) Glucose and insulin versus cation-exchange resin for the treatment of hyperkalemia in very low birth weight infants. J Pediatr 118(1):121–123PubMedGoogle Scholar
  93. 93.
    Mann SE, Dvorak N, Gilbert H, Taylor RN (2006) Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am J Obstet Gynecol 194(3):884–887. doi: 10.1016/j.ajog.2005.07.004 PubMedGoogle Scholar
  94. 94.
    Mann SE, Ricke EA, Torres EA, Taylor RN (2005) A novel model of polyhydramnios: amniotic fluid volume is increased in aquaporin 1 knockout mice. Am J Obstet Gynecol 192(6):2041–2044; discussion 2044–2046. doi: 10.1016/j.ajog.2005.02.046 PubMedGoogle Scholar
  95. 95.
    Mann SE, Ricke EA, Yang BA, Verkman AS, Taylor RN (2002) Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol 187(4):902–907PubMedGoogle Scholar
  96. 96.
    Martinerie L, Pussard E, Foix-L’Helias L, Petit F, Cosson C, Boileau P, Lombes M (2009) Physiological partial aldosterone resistance in human newborns. Pediatr Res 66(3):323–328. doi: 10.1203/PDR.0b013e3181b1bbec PubMedCentralPubMedGoogle Scholar
  97. 97.
    Martinerie L, Viengchareun S, Delezoide AL, Jaubert F, Sinico M, Prevot S, Boileau P, Meduri G, Lombes M (2009) Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates. Endocrinology 150(9):4414–4424. en.2008-1498 [pii], doi: 10.1210/en.2008-1498 PubMedCentralPubMedGoogle Scholar
  98. 98.
    McDonough AA, Brown TA, Horowitz B, Chiu R, Schlotterbeck J, Bowen J, Schmitt CA (1988) Thyroid hormone coordinately regulates Na+-K+-ATPase alpha- and beta-subunit mRNA levels in kidney. Am J Physiol 254(2 Pt 1):C323–C329PubMedGoogle Scholar
  99. 99.
    Moe AJ, Smith CH (1989) Anionic amino acid uptake by microvillous membrane vesicles from human placenta. Am J Physiol 257(5 Pt 1):C1005–C1011PubMedGoogle Scholar
  100. 100.
    Moniz CF, Nicolaides KH, Tzannatos C, Rodeck CH (1986) Calcium homeostasis in second trimester fetuses. J Clin Pathol 39(8):838–841PubMedCentralPubMedGoogle Scholar
  101. 101.
    Nakamura K, Stokes JB, McCray PB Jr (2002) Endogenous and exogenous glucocorticoid regulation of ENaC mRNA expression in developing kidney and lung. Am J Physiol Cell Physiol 283(3):C762–C772. doi: 10.1152/ajpcell.00029.2002 PubMedGoogle Scholar
  102. 102.
    Namgung R, Tsang RC (2003) Bone in the pregnant mother and newborn at birth. Clin Chim Acta 333(1):1–11. doi:S0009898102000256 [pii]PubMedGoogle Scholar
  103. 103.
    Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92(4):1013–1017PubMedCentralPubMedGoogle Scholar
  104. 104.
    Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S (1995) Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol 269(6 Pt 2):F900–F910PubMedGoogle Scholar
  105. 105.
    Ostrowski NL, Young WS 3rd, Knepper MA, Lolait SJ (1993) Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology 133(4):1849–1859PubMedGoogle Scholar
  106. 106.
    Palmer LG (1999) Potassium secretion and the regulation of distal nephron K channels. Am J Physiol 277(6 Pt 2):F821–F825PubMedGoogle Scholar
  107. 107.
    Persson A, Johansson M, Jansson T, Powell TL (2002) Na(+)/K(+)-ATPase activity and expression in syncytiotrophoblast plasma membranes in pregnancies complicated by diabetes. Placenta 23(5):386–391. doi: 10.1053/plac.2002.0807 PubMedGoogle Scholar
  108. 108.
    Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus GG, Konrad M, Seyberth HW (2002) Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med 112(3):183–190. doi:S0002934301010865 [pii]PubMedGoogle Scholar
  109. 109.
    Pitkin RM (1985) Calcium metabolism in pregnancy and the perinatal period: a review. Am J Obstet Gynecol 151(1):99–109. doi:0002-9378(85)90434-X [pii]PubMedGoogle Scholar
  110. 110.
    Polacek E, Vocel J, Neugebauerova L, Sebkova M, Vechetova E (1965) The osmotic concentrating ability in healthy infants and children. Arch Dis Child 40:291–295PubMedCentralPubMedGoogle Scholar
  111. 111.
    Quaggin SE, Payne JA, Forbush B 3rd, Igarashi P (1995) Localization of the renal Na-K-Cl cotransporter gene (Slc12a1) on mouse chromosome 2. Mamm Genome Off J Int Mamm Genome Soc 6(8):557–558Google Scholar
  112. 112.
    Quan A, Baum M (1998) Endogenous angiotensin II modulates rat proximal tubule transport with acute changes in extracellular volume. Am J Physiol 275(1 Pt 2):F74–F78PubMedCentralPubMedGoogle Scholar
  113. 113.
    Quigley R, Chakravarty S, Baum M (2004) Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity. Am J Physiol Renal Physiol 286(2):F317–F322. doi: 10.1152/ajprenal.00122.2003 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Rajerison RM, Butlen D, Jard S (1976) Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol Cell Endocrinol 4(4):271–285PubMedGoogle Scholar
  115. 115.
    Rane S, Aperia A (1985) Ontogeny of Na-K-ATPase activity in thick ascending limb and of concentrating capacity. Am J Physiol 249(5 Pt 2):F723–F728PubMedGoogle Scholar
  116. 116.
    Rees L, Forsling ML, Brook CG (1980) Vasopressin concentrations in the neonatal period. Clin Endocrinol 12(4):357–362Google Scholar
  117. 117.
    Rodriguez-Soriano J, Ubetagoyena M, Vallo A (1990) Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol 4(2):105–110PubMedGoogle Scholar
  118. 118.
    Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G (1983) Renal handling of sodium in premature and full-term neonates: a study using clearance methods during water diuresis. Pediatr Res 17(12):1013–1016PubMedGoogle Scholar
  119. 119.
    Rodriguez G, Ventura P, Samper MP, Moreno L, Sarria A, Perez-Gonzalez JM (2000) Changes in body composition during the initial hours of life in breast-fed healthy term newborns. Biol Neonate 77(1):12–16PubMedGoogle Scholar
  120. 120.
    Sagnella GA, MacGregor GA (1984) Physiology: cardiac peptides and the control of sodium excretion. Nature 309(5970):666–667PubMedGoogle Scholar
  121. 121.
    Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253(5 Pt 2):F823–F832PubMedGoogle Scholar
  122. 122.
    Satlin LM (1994) Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 266(1 Pt 2):F57–F65PubMedGoogle Scholar
  123. 123.
    Sato K, Kondo T, Iwao H, Honda S, Ueda K (1995) Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr 126(1):109–113. doi:S0022-3476(95)70511-2 [pii]PubMedGoogle Scholar
  124. 124.
    Schauberger CW, Pitkin RM (1979) Maternal-perinatal calcium relationships. Obstet Gynecol 53(1):74–76PubMedGoogle Scholar
  125. 125.
    Schmidt U, Horster M (1977) Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233(1):F55–F60PubMedGoogle Scholar
  126. 126.
    Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 276(3 Pt 2):F367–F381PubMedGoogle Scholar
  127. 127.
    Schroder H, Leichtweiss HP (1977) Perfusion rates and the transfer of water across isolated guinea pig placenta. Am J Physiol 232(6):H666–H670PubMedGoogle Scholar
  128. 128.
    Schwartz GJ, Evan AP (1984) Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol 246(6 Pt 2):F845–F852PubMedGoogle Scholar
  129. 129.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277(22):19665–19672. doi: 10.1074/jbc.M200943200, M200943200 [pii]PubMedGoogle Scholar
  130. 130.
    Serrano CV, Talbert LM, Welt LG (1964) Potassium deficiency in the pregnant dog. J Clin Invest 43:27–31. doi: 10.1172/JCI104890 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Shaffer SG, Quimiro CL, Anderson JV, Hall RT (1987) Postnatal weight changes in low birth weight infants. Pediatrics 79(5):702–705PubMedGoogle Scholar
  132. 132.
    Shah M, Gupta N, Dwarakanath V, Moe OW, Baum M (2000) Ontogeny of Na+/H+ antiporter activity in rat proximal convoluted tubules. Pediatr Res 48(2):206–210. doi: 10.1203/00006450-200008000-00014 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13(2):183–188. doi: 10.1038/ng0696-183 PubMedGoogle Scholar
  134. 134.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106. doi:7616 [pii]PubMedGoogle Scholar
  135. 135.
    Singh BS, Sadiq HF, Noguchi A, Keenan WJ (2002) Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr 141(1):16–20. S0022-3476(02)00032-X [pii], doi: 10.1067/mpd.2002.125229 PubMedGoogle Scholar
  136. 136.
    Speller AM, Moffat DB (1977) Tubulo-vascular relationships in the developing kidney. J Anat 123(Pt 2):487–500PubMedCentralPubMedGoogle Scholar
  137. 137.
    Spitzer A (1982) The role of the kidney in sodium homeostasis during maturation. Kidney Int 21(4):539–545PubMedGoogle Scholar
  138. 138.
    Spitzer A, Barac-Nieto M (2001) Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol 16(9):763–771. doi: 10.1007/s0046710160763 PubMedGoogle Scholar
  139. 139.
    Stefano JL, Norman ME, Morales MC, Goplerud JM, Mishra OP, Delivoria-Papadopoulos M (1993) Decreased erythrocyte Na+, K(+)-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr 122(2):276–284PubMedGoogle Scholar
  140. 140.
    Stulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77(3):805–836PubMedGoogle Scholar
  141. 141.
    Stulc J, Stulcova B, Sibley CP (1993) Evidence for active maternal-fetal transport of Na+ across the placenta of the anaesthetized rat. J Physiol 470:637–649PubMedCentralPubMedGoogle Scholar
  142. 142.
    Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27(4):392–401. doi: 10.1007/s00774-009-0079-1 PubMedGoogle Scholar
  143. 143.
    Tomita H, Brace RA, Cheung CY, Longo LD (1985) Vasopressin dose–response effects on fetal vascular pressures, heart rate, and blood volume. Am J Physiol 249(5 Pt 2):H974–H980PubMedGoogle Scholar
  144. 144.
    Tsang RC, Chen IW, Friedman MA, Chen I (1973) Neonatal parathyroid function: role of gestational age and postnatal age. J Pediatr 83(5):728–738PubMedGoogle Scholar
  145. 145.
    Tsang RC, Kleinman LI, Sutherland JM, Light IJ (1972) Hypocalcemia in infants of diabetic mothers. Studies in calcium, phosphorus, and magnesium metabolism and parathormone responsiveness. J Pediatr 80(3):384–395PubMedGoogle Scholar
  146. 146.
    Tsang RC, Light IJ, Sutherland JM, Kleinman LI (1973) Possible pathogenetic factors in neonatal hypocalcemia of prematurity. The role of gestation, hyperphosphatemia, hypomagnesemia, urinary calcium loss, and parathormone responsiveness. J Pediatr 82(3):423–429PubMedGoogle Scholar
  147. 147.
    Tsang RC, Oh W (1970) Serum magnesium levels in low birth weight infants. Am J Dis Child 120(1):44–48PubMedGoogle Scholar
  148. 148.
    Tulassay T, Seri I, Rascher W (1987) Atrial natriuretic peptide and extracellular volume contraction after birth. Acta Paediatr Scand 76(3):444–446PubMedGoogle Scholar
  149. 149.
    Vanpee M, Herin P, Zetterstrom R, Aperia A (1988) Postnatal development of renal function in very low birthweight infants. Acta Paediatr Scand 77(2):191–197PubMedGoogle Scholar
  150. 150.
    Vehaskari VM (1994) Ontogeny of cortical collecting duct sodium transport. Am J Physiol 267(1 Pt 2):F49–F54PubMedGoogle Scholar
  151. 151.
    Wagner CA, Biber J, Murer H (2008) Of men and mice: who is in control of renal phosphate reabsorption? J Am Soc Nephrol 19(9):1625–1626. ASN.2008060611 [pii], doi: 10.1681/ASN.2008060611 PubMedGoogle Scholar
  152. 152.
    Wandrup J, Kroner J, Pryds O, Kastrup KW (1988) Age-related reference values for ionized calcium in the first week of life in premature and full-term neonates. Scand J Clin Lab Invest 48(3):255–260PubMedGoogle Scholar
  153. 153.
    Wang S, Kallichanda N, Song W, Ramirez BA, Ross MG (2001) Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol 185(5):1226–1231. doi: 10.1067/mob.2001.117971 PubMedGoogle Scholar
  154. 154.
    Whitsett JA, Wallick ET (1980) [3H]ouabain binding and Na+-K+-ATPase activity in human placenta. Am J Physiol 238(1):E38–E45PubMedGoogle Scholar
  155. 155.
    Wilkinson AW (1973) Some aspects of renal function in the newly born. J Pediatr Surg 8(2):103–116PubMedGoogle Scholar
  156. 156.
    Woda C, Mulroney SE, Halaihel N, Sun L, Wilson PV, Levi M, Haramati A (2001) Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat. Am J Physiol Regul Integr Comp Physiol 280(5):R1524–R1533PubMedGoogle Scholar
  157. 157.
    Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280(5):F786–F793PubMedGoogle Scholar
  158. 158.
    Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM (2003) Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. Am J Physiol Renal Physiol 285(4):F629–F639. doi: 10.1152/ajprenal.00191.2003, 00191.2003 [pii]PubMedGoogle Scholar
  159. 159.
    Wood CE, Cheung CY, Brace RA (1987) Fetal heart rate, arterial pressure, and blood volume responses to cortisol infusion. Am J Physiol 253(6 Pt 2):R904–R909PubMedGoogle Scholar
  160. 160.
    Xi Q, Hoenderop JG, Bindels RJ (2009) Regulation of magnesium reabsorption in DCT. Pflug Arch 458(1):89–98. doi: 10.1007/s00424-008-0601-7 Google Scholar
  161. 161.
    Zhou H, Satlin LM (2004) Renal potassium handling in healthy and sick newborns. Semin Perinatol 28(2):103–111PubMedGoogle Scholar
  162. 162.
    Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol 266(3 Pt 1):C809–C824PubMedGoogle Scholar
  163. 163.
    Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ (1976) Body composition of the reference fetus. Growth 40(4):329–341PubMedGoogle Scholar
  164. 164.
    Zink H, Horster M (1977) Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 233(6):F519–F524PubMedGoogle Scholar
  165. 165.
    Zolotnitskaya A, Satlin LM (1999) Developmental expression of ROMK in rat kidney. Am J Physiol 276(6 Pt 2):F825–F836PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Isa F. Ashoor
    • 1
  • Nilka de Jesús-González
    • 1
  • Michael J. G. Somers
    • 1
    Email author
  1. 1.Division of NephrologyHarvard Medical School, Boston Children’s HospitalBostonUSA

Personalised recommendations