Advertisement

Development of the Kidney and Lower Urinary Tract

  • Joana Rosa Pereira dos SantosEmail author
  • Tino D. Piscione
Chapter
  • 1.2k Downloads

Abstract

Congenital abnormalities of the kidney and urinary tract (CAKUT) are the cause of 30–50 % of end-stage renal disease in young children [306]. CAKUT are represented by a heterogeneous group of renal, ureter, and bladder malformations across a wide range of clinical severity (Table 1.1). The incidence of renal and urinary tract anomalies in humans is 0.3–1.6 per 1,000 live born and stillborn infants [358]. Renal malformations account for 20–30 % of all solid-organ birth defects detected by antenatal sonography during pregnancy [272]. Thirty percent of cases occur in association with extrarenal malformations [358] and may be found as part of over 100 congenital syndromes (Table 1.2) [172].

References

  1. 1.
    Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson DCV, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindizicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila eyes absent gene underlies Branchio-Oto-Renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164PubMedGoogle Scholar
  2. 2.
    Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116(3):663–674PubMedCentralPubMedGoogle Scholar
  3. 3.
    Airik R, Kispert A (2007) Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int 72(12):1459–1467PubMedGoogle Scholar
  4. 4.
    Al-Awqati Q, Goldberg MR (1998) Architectural patterns in branching morphogenesis in the kidney. Kidney Int 54:1832–1842PubMedGoogle Scholar
  5. 5.
    Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110(2):195–200PubMedGoogle Scholar
  6. 6.
    Alcaraz A, Vinaixa F, Tejedo-Mateu A, Fores MM, Gotzens V, Mestres CA, Oliveira J, Carretero P (1991) Obstruction and recanalization of the ureter during embryonic development. J Urol 145(2):410–416PubMedGoogle Scholar
  7. 7.
    Amri K, Freund N, Vilar J, Merlet-Benichou C, Lelievre-Pegorier M (1999) Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 48(11):2240–2245PubMedGoogle Scholar
  8. 8.
    Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14(3):341–344PubMedGoogle Scholar
  9. 9.
    Barak H, Rosenfelder L, Schultheiss TM, Reshef R (2005) Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn 232(4):901–914PubMedGoogle Scholar
  10. 10.
    Barbaux S, Niaudet P, Gubler M-C, Grünfeld J-P, Jaubert F, Kuttenn F, Fékété CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470PubMedGoogle Scholar
  11. 11.
    Bard J (1996) A new role for the stromal cells in kidney development. Bioessays 18(9):705–707PubMedGoogle Scholar
  12. 12.
    Bard JB (2002) Growth and death in the developing mammalian kidney: signals, receptors and conversations. Bioessays 24(1):72–82PubMedGoogle Scholar
  13. 13.
    Baskin LS, Hayward SW, Young P, Cunha GR (1996) Role of mesenchymal-epithelial interactions in normal bladder development. J Urol 156(5):1820–1827PubMedGoogle Scholar
  14. 14.
    Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8(2):229–239PubMedGoogle Scholar
  15. 15.
    Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299(2):466–477PubMedGoogle Scholar
  16. 16.
    Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32(1):109–115PubMedGoogle Scholar
  17. 17.
    Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37(10):1082–1089PubMedGoogle Scholar
  18. 18.
    Battin M, Albersheim S, Newman D (1995) Congenital genitourinary tract abnormalities following cocaine exposure in utero. Am J Perinatol 12(6):425–428PubMedGoogle Scholar
  19. 19.
    Bergmann C, von Bothmer J, Ortiz Bruchle N, Venghaus A, Frank V, Fehrenbach H, Hampel T, Pape L, Buske A, Jonsson J, Sarioglu N, Santos A, Ferreira JC, Becker JU, Cremer R, Hoefele J, Benz MR, Weber LT, Buettner R, Zerres K (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol 22(11):2047–2056PubMedCentralPubMedGoogle Scholar
  20. 20.
    Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT (2001) Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68(1):219–224PubMedCentralPubMedGoogle Scholar
  21. 21.
    Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, Berry PJ, Clark PM, Lindner T, Bell GI, Ryffel GU, Nicholls AJ, Hattersley AT (2000) Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int 57(3):898–907PubMedGoogle Scholar
  22. 22.
    Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergstrom GG, Enerback S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113(11):1560–1570PubMedCentralPubMedGoogle Scholar
  23. 23.
    Bok G, Drews U (1983) The role of the Wolffian ducts in the formation of the sinus vagina: an organ culture study. J Embryol Exp Morphol 73:275–295PubMedGoogle Scholar
  24. 24.
    Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS (2006) Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 290(1):44–56PubMedGoogle Scholar
  25. 25.
    Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M (2011) Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PLoS One 6(6):e21529PubMedCentralPubMedGoogle Scholar
  26. 26.
    Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16(22):2958–2970PubMedCentralPubMedGoogle Scholar
  27. 27.
    Boyle S, de Caestecker M (2006) Role of transcriptional networks in coordinating early events during kidney development. Am J Physiol Renal Physiol 291(1):F1–F8PubMedGoogle Scholar
  28. 28.
    Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313(1):234–245PubMedCentralPubMedGoogle Scholar
  29. 29.
    Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D (2007) Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134(10):1967–1975PubMedGoogle Scholar
  30. 30.
    Brenner BM, Anderson S (1992) The interrelationships among filtration surface area, blood pressure, and chronic renal disease. J Cardiovas Pharmacol 19(Suppl 6):S1–S7Google Scholar
  31. 31.
    Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1(4 Pt 1):335–347PubMedGoogle Scholar
  32. 32.
    Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317(1):83–94PubMedGoogle Scholar
  33. 33.
    Brodbeck S, Englert C (2004) Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol 19(3):249–255PubMedGoogle Scholar
  34. 34.
    Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMedGoogle Scholar
  35. 35.
    Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15(5):781–791PubMedCentralPubMedGoogle Scholar
  36. 36.
    Burn SF, Webb A, Berry RL, Davies JA, Ferrer-Vaquer A, Hadjantonakis AK, Hastie ND, Hohenstein P (2011) Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 352(2):288–298PubMedCentralPubMedGoogle Scholar
  37. 37.
    Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266(2):285–298PubMedGoogle Scholar
  38. 38.
    Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62PubMedCentralPubMedGoogle Scholar
  39. 39.
    Cain JE, Hartwig S, Bertram JF, Rosenblum ND (2008) Bone morphogenetic protein signaling in the developing kidney: present and future. Differentiation 76(8):831–842PubMedGoogle Scholar
  40. 40.
    Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199–1206PubMedCentralPubMedGoogle Scholar
  41. 41.
    Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4(10):e7313PubMedCentralPubMedGoogle Scholar
  42. 42.
    Cain JE, Nion T, Jeulin D, Bertram JF (2005) Exogenous BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro. Kidney Int 67(2):420–431PubMedGoogle Scholar
  43. 43.
    Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF (2001) Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int 60(1):147–155PubMedGoogle Scholar
  44. 44.
    Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Rosenblum ND, Filmus J (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264PubMedCentralPubMedGoogle Scholar
  45. 45.
    Cantley LG, Barros EJG, Gandhi M, Rauchman M, Nigam SK (1994) Regulation of mitogenesis, motogenesis, and tubulogenesis by hepatocyte growth factor in renal collecting duct cells. Am J Physiol 267:F271–F280PubMedGoogle Scholar
  46. 46.
    Cao M, Liu B, Cunha G, Baskin L (2008) Urothelium patterns bladder smooth muscle location. Pediatr Res 64(4):352–357PubMedCentralPubMedGoogle Scholar
  47. 47.
    Cao M, Tasian G, Wang MH, Liu B, Cunha G, Baskin L (2010) Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation 79(4–5):244–250PubMedCentralPubMedGoogle Scholar
  48. 48.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292PubMedGoogle Scholar
  49. 49.
    Caruana G, Cullen-McEwen L, Nelson AL, Kostoulias X, Woods K, Gardiner B, Davis MJ, Taylor DF, Teasdale RD, Grimmond SM, Little MH, Bertram JF (2006) Spatial gene expression in the T-stage mouse metanephros. Gene Expr Patterns 6(8):807–825PubMedGoogle Scholar
  50. 50.
    Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135(19):3301–3310PubMedGoogle Scholar
  51. 51.
    Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231(3):601–608PubMedGoogle Scholar
  52. 52.
    Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genom 23(2):159–171Google Scholar
  53. 53.
    Chatterjee R, Ramos E, Hoffman M, Vanwinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S (2012) Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Human Genet 131(11):1725–1738Google Scholar
  54. 54.
    Chen L, Al-Awqati Q (2005) Segmental expression of Notch and Hairy genes in nephrogenesis. Am J Physiol Renal Physiol 288(5):F939–F952PubMedGoogle Scholar
  55. 55.
    Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, McMahon AP, Kopan R (2007) Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134(4):801–811PubMedCentralPubMedGoogle Scholar
  56. 56.
    Cheng W, Yeung CK, Ng YK, Zhang JR, Hui CC, Kim PC (2008) Sonic Hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J Urol 180(4):1543–1550PubMedGoogle Scholar
  57. 57.
    Chertin B, Puri P (2003) Familial vesicoureteral reflux. J Urol 169(5):1804–1808PubMedGoogle Scholar
  58. 58.
    Chi L, Saarela U, Railo A, Prunskaite-Hyyrylainen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ (2011) A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 6(11):e27676PubMedCentralPubMedGoogle Scholar
  59. 59.
    Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, Vainio S (2004) Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 131(14):3345–3356PubMedGoogle Scholar
  60. 60.
    Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, Mendelsohn C, Costantini F (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17(2):199–209PubMedCentralPubMedGoogle Scholar
  61. 61.
    Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138(10):2089–2097PubMedCentralPubMedGoogle Scholar
  62. 62.
    Chiba S (2006) Notch signaling in stem cell systems. Stem Cells (Dayton, Ohio) 24(11):2437–2447Google Scholar
  63. 63.
    Clarren SK (1994) Chapter 27: Malformations of the renal system. In: Holliday MA, Barratt TM, Avner ED (eds) Pediatric nephrology, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  64. 64.
    Clark AT, Young RJ, Bertram JF (2001) In vitro studies on the roles of transforming growth factor-beta 1 in rat metanephric development. Kidney Int 59:1641–1653PubMedGoogle Scholar
  65. 65.
    Clarke JC, Patel SR, Raymond RM Jr, Andrew S, Robinson BG, Dressler GR, Brophy PD (2006) Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Hum Mol Genet 15(23):3420–3428PubMedGoogle Scholar
  66. 66.
    Constantinou CE (1978) Contractility of the pyeloureteral pacemaker system. Urol Int 33(6):399–416PubMedGoogle Scholar
  67. 67.
    Coppes MJ, Liefers GJ, Higuchi M, Zinn AB, Balfe JW, Williams BR (1992) Inherited WT1 mutation in Denys-Drash syndrome. Cancer Res 52(21):6125–6128PubMedGoogle Scholar
  68. 68.
    Costantini F (2010) GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis 6(4):252–262PubMedCentralPubMedGoogle Scholar
  69. 69.
    Cui S, Schwartz L, Quaggin SE (2003) Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn 226(3):512–522PubMedGoogle Scholar
  70. 70.
    David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) c-kit and ureteral peristalsis. J Urol 173(1):292–295PubMedGoogle Scholar
  71. 71.
    Deschamps J, van Nes J (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132(13):2931–2942PubMedGoogle Scholar
  72. 72.
    Dewulf N, Verschueren K, Lonnoy O, Morén A, Grimsby S, Vande Spiegle K, Miyazono K, Huylebroeck D, Ten Dijke P (1995) Distinct spatial and temporal expression patterns of two type 1 receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology 136:2652–2663PubMedGoogle Scholar
  73. 73.
    Donovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, Kreidberg JA (1999) Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet 24:252–262PubMedGoogle Scholar
  74. 74.
    Douglas-Denton R, Moritz KM, Bertram JF, Wintour EM (2002) Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J Am Soc Nephrol 13(2):406–410PubMedGoogle Scholar
  75. 75.
    Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529PubMedGoogle Scholar
  76. 76.
    Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136(23):3863–3874PubMedCentralPubMedGoogle Scholar
  77. 77.
    Drews U, Sulak O, Schenck PA (2002) Androgens and the development of the vagina. Biol Reprod 67(4):1353–1359PubMedGoogle Scholar
  78. 78.
    Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B (1998) Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 19:47–50PubMedGoogle Scholar
  79. 79.
    Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807PubMedGoogle Scholar
  80. 80.
    Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208:349–362PubMedGoogle Scholar
  81. 81.
    Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BLM (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188:235–247PubMedGoogle Scholar
  82. 82.
    Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, Sariola H, Pachnis V (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–792PubMedGoogle Scholar
  83. 83.
    Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BAJ, Munnich A (1994) Mutations of the RET proto-oncogene in Hirschprung’s disease. Nature 367:378–380PubMedGoogle Scholar
  84. 84.
    Edwin F, Anderson K, Ying C, Patel TB (2009) Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 76(4):679–691PubMedCentralPubMedGoogle Scholar
  85. 85.
    El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, Meleg-Smith S (2000) Bradykinin B2 null mice are prone to renal dysplasia: gene-environment interactions in kidney development. Physiol Genom 3(3):121–131Google Scholar
  86. 86.
    Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661PubMedGoogle Scholar
  87. 87.
    Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29(3):822–829PubMedGoogle Scholar
  88. 88.
    Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, Milbrandt J (1998) GFRa 1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324PubMedGoogle Scholar
  89. 89.
    Eremina V, Cui S, Gerber H, Ferrara N, Haigh J, Nagy A, Ema M, Rossant J, Jothy S, Miner JH, Quaggin SE (2006) Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol 17(3):724–735PubMedGoogle Scholar
  90. 90.
    Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111(5):707–716PubMedCentralPubMedGoogle Scholar
  91. 91.
    Erkner A, Gallet A, Angelats C, Fasano L, Kerridge S (1999) The role of Teashirt in proximal leg development in Drosophila: ectopic Teashirt expression reveals different cell behaviours in ventral and dorsal domains. Dev Biol 215(2):221–232PubMedGoogle Scholar
  92. 92.
    Evan AP, Gattone VH II, Schwartz GJ (1983) Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am J Physiol 245(3):F391–F407PubMedGoogle Scholar
  93. 93.
    Fagman H, Andersson L, Nilsson M (2006) The developing mouse thyroid: embryonic vessel contacts and parenchymal growth pattern during specification, budding, migration, and lobulation. Dev Dyn 235(2):444–455PubMedGoogle Scholar
  94. 94.
    Fasano L, Roder L, Core N, Alexandre E, Vola C, Jacq B, Kerridge S (1991) The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 64(1):63–79PubMedGoogle Scholar
  95. 95.
    Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chaterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K (1996) The mouse Pax (1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye and kidney. Proc Natl Acad Sci U S A 93:13870–13875PubMedCentralPubMedGoogle Scholar
  96. 96.
    Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X, Michalakis S, Shaltiel L, Weidinger M, Stieber J, Feil S, Feil R, Hofmann F, Wahl-Schott C, Biel M (2011) HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res 109(9):1015–1023PubMedGoogle Scholar
  97. 97.
    Fetterman GH, Shuplock NA, Philipp FJ, Gregg HS (1965) The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics 35:601–619PubMedGoogle Scholar
  98. 98.
    Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38(1):21–23PubMedGoogle Scholar
  99. 99.
    Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, Behringer RR, Huff V (2004) The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol 24(22):9899–9910PubMedCentralPubMedGoogle Scholar
  100. 100.
    Garrod DR, Fleming S (1990) Early expression of desmosomal components during kidney tubule morphogenesis in human and murine embryos. Development 108(2):313–321PubMedGoogle Scholar
  101. 101.
    Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286PubMedGoogle Scholar
  102. 102.
    Gilpin SA, Gosling JA (1983) Smooth muscle in the wall of the developing human urinary bladder and urethra. J Anat 137(Pt 3):503–512PubMedCentralPubMedGoogle Scholar
  103. 103.
    Godin RE, Robertson EJ, Dudley AT (1999) Role of BMP family members during kidney development. Int J Dev Biol 43:405–411PubMedGoogle Scholar
  104. 104.
    Godin RE, Takaesu NT, Robertson EJ, Dudley AT (1998) Regulation of BMP7 expression during kidney development. Development 125:3473–3482PubMedGoogle Scholar
  105. 105.
    Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27(21):7661–7668PubMedCentralPubMedGoogle Scholar
  106. 106.
    Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132(17):3847–3857PubMedGoogle Scholar
  107. 107.
    Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6(5):709–717PubMedGoogle Scholar
  108. 108.
    Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4(12):e1000316PubMedCentralPubMedGoogle Scholar
  109. 109.
    Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133(1):53–61PubMedGoogle Scholar
  110. 110.
    Guillaume R, Bressan M, Herzlinger D (2009) Paraxial mesoderm contributes stromal cells to the developing kidney. Dev Biol 329(2):169–175PubMedCentralPubMedGoogle Scholar
  111. 111.
    Guo G, Morrison DJ, Licht JD, Quaggin SE (2004) WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. J Am Soc Nephrol 15(11):2851–2856PubMedGoogle Scholar
  112. 112.
    Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, Hastie ND, Schedl A (2002) WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11(6):651–659PubMedGoogle Scholar
  113. 113.
    Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: Clinical, causal, and pathogenetic considerations. Am J Med Genet 7(1):47–74PubMedGoogle Scholar
  114. 114.
    Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106(3):319–329PubMedGoogle Scholar
  115. 115.
    Hanson J, Gorman J, Reese J, Fraizer G (2007) Regulation of vascular endothelial growth factor, VEGF, gene promoter by the tumor suppressor, WT1. Front Biosci: J Virtual Libr 12:2279–2290Google Scholar
  116. 116.
    Haraguchi R, Mo R, Hui C, Motoyama J, Makino S, Shiroishi T, Gaffield W, Yamada G (2001) Unique functions of Sonic hedgehog signaling during external genitalia development. Development 128(21):4241–4250PubMedGoogle Scholar
  117. 117.
    Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, Houghton D, Lloyd-MacGilp S, Pi X, Roochun Y, Sharghi M, Tindal C, McMahon AP, Gottesman B, Little MH, Georgas K, Aronow BJ, Potter SS, Brunskill EW, Southard-Smith EM, Mendelsohn C, Baldock RA, Davies JA, Davidson D (2011) The GUDMAP database–an online resource for genitourinary research. Development 138(13):2845–2853PubMedCentralPubMedGoogle Scholar
  118. 118.
    Harrison MR, Golbus MS, Filly RA, Nakayama DK, Callen PW, de Lorimier AA, Hricak H (1982) Management of the fetus with congenital hydronephrosis. J Pediatr Surg 17(6):728–742PubMedGoogle Scholar
  119. 119.
    Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19(1):117–124PubMedCentralPubMedGoogle Scholar
  120. 120.
    Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, Alterovitz G, Ramoni M, Fraenkel E, Kreidberg JA (2010) Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137(7):1189–1203PubMedCentralPubMedGoogle Scholar
  121. 121.
    Hartwig S, Hu MC, Cella C, Piscione T, Filmus J, Rosenblum ND (2005) Glypican-3 modulates inhibitory Bmp2-Smad signaling to control renal development in vivo. Mech Dev 122(7–8):928–938PubMedGoogle Scholar
  122. 122.
    Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478PubMedGoogle Scholar
  123. 123.
    Hendry C, Rumballe B, Moritz K, Little MH (2011) Defining and redefining the nephron progenitor population. Pediatr Nephrol 26(9):1395–1406PubMedCentralPubMedGoogle Scholar
  124. 124.
    Higgins JP, Wang L, Kambham N, Montgomery K, Mason V, Vogelmann SU, Lemley KV, Brown PO, Brooks JD, van de Rijn M (2004) Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell 15(2):649–656PubMedCentralPubMedGoogle Scholar
  125. 125.
    Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, Van Velzen D (1992) The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 99(4):296–301PubMedGoogle Scholar
  126. 126.
    Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64(6):777–784PubMedGoogle Scholar
  127. 127.
    Hoppe CC, Evans RG, Bertram JF, Moritz KM (2007) Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292(5):R1768–R1774PubMedGoogle Scholar
  128. 128.
    Hoskins BE, Cramer CH 2nd, Tasic V, Kehinde EO, Ashraf S, Bogdanovic R, Hoefele J, Pohl M, Hildebrandt F (2008) Missense mutations in EYA1 and TCF2 are a rare cause of urinary tract malformations. Nephrol Dial Transplant 23(2):777–779PubMedGoogle Scholar
  129. 129.
    Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17(3):258–265PubMedGoogle Scholar
  130. 130.
    Hu MC, Rosenblum ND (2003) Genetic regulation of branching morphogenesis: lessons learned from loss-of-function phenotypes. Pediatr Res 54(4):433–438PubMedGoogle Scholar
  131. 131.
    Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122PubMedGoogle Scholar
  132. 132.
    Hui CC, Angers S (2011) Gli proteins in development and disease. Annu Rev Cell Dev Biol 27:513–537PubMedGoogle Scholar
  133. 133.
    Hurtado R, Bub G, Herzlinger D (2010) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77(6):500–508PubMedCentralPubMedGoogle Scholar
  134. 134.
    Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, Abrass CK, Abrahamson DR (1996) Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol 270(5 Pt 2):F886–F899PubMedGoogle Scholar
  135. 135.
    Hynes PJ, Fraher JP (2004) The development of the male genitourinary system. I. The origin of the urorectal septum and the formation of the perineum. Br J Plast Surg 57(1):27–36PubMedGoogle Scholar
  136. 136.
    Iafolla K, Fratkin JD, Spiegel PK, Cohen MM Jr, Graham JM Jr (1989) Case report and delineation of the congenital hypothalamic hamartoblastoma syndrome (Pallister-Hall syndrome). Am J Med Genet 33(4):489–499PubMedGoogle Scholar
  137. 137.
    Iglesias DM, Hueber PA, Chu L, Campbell R, Patenaude AM, Dziarmaga AJ, Quinlan J, Mohamed O, Dufort D, Goodyer PR (2007) Canonical WNT signaling during kidney development. Am J Physiol Renal Physiol 293(2):F494–F500PubMedGoogle Scholar
  138. 138.
    Ishibe S, Karihaloo A, Ma H, Zhang J, Marlier A, Mitobe M, Togawa A, Schmitt R, Czyczk J, Kashgarian M, Geller DS, Thorgeirsson SS, Cantley LG (2009) Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development 136(2):337–345PubMedCentralPubMedGoogle Scholar
  139. 139.
    Hutson J (2008) Development of the urogenital system. In: Standring S (ed) Gray’s anatomy. 40th edn. Churchill Livingstone Elsevier, Edinburgh/New York, pp 1305–1325Google Scholar
  140. 140.
    Jackson SM, Nakato H, Sugiura M, Jannuzi A, Oakes R, Kaluza V, Golden C, Selleck SB (1997) dally, a drosophila glypican, controls cellular responses to the TGF-ß-related morphogen, Dpp. Development 124:4113–4120PubMedGoogle Scholar
  141. 141.
    James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133(15):2995–3004PubMedGoogle Scholar
  142. 142.
    James RG, Schultheiss TM (2003) Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 253(1):109–124PubMedGoogle Scholar
  143. 143.
    James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288(1):113–125PubMedGoogle Scholar
  144. 144.
    Jeanpierre C, Denamur E, Henry I, Cabanis MO, Luce S, Cecille A, Elion J, Peuchmaur M, Loirat C, Niaudet P, Gubler MC, Junien C (1998) Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am J Hum Genet 62(4):824–833PubMedCentralPubMedGoogle Scholar
  145. 145.
    Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, Martinovic J, Amiel J, Attie-Bitach T, Delezoide AL, Loget P, Blanchet P, Gaillard D, Gonzales M, Carpentier W, Nitschke P, Tores F, Heidet L, Antignac C, Salomon R (2011) RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet 48(7):497–504PubMedGoogle Scholar
  146. 146.
    Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16(7):2141–2149PubMedGoogle Scholar
  147. 147.
    Jeong HW, Jeon US, Koo BK, Kim WY, Im SK, Shin J, Cho Y, Kim J, Kong YY (2009) Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119(11):3290–3300PubMedCentralPubMedGoogle Scholar
  148. 148.
    Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 15(3):266–268PubMedGoogle Scholar
  149. 149.
    Karihaloo A, O’Rourke DA, Nickel C, Spokes K, Cantley LG (2001) Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem 276(12):9166–9173PubMedGoogle Scholar
  150. 150.
    Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799PubMedCentralPubMedGoogle Scholar
  151. 151.
    Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234PubMedGoogle Scholar
  152. 152.
    Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122:3627–3637PubMedGoogle Scholar
  153. 153.
    Kitamoto Y, Tokunaga H, Tomita K (1997) Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J Clin Invest 99(10):2351–2357PubMedCentralPubMedGoogle Scholar
  154. 154.
    Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, Gessler M (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1+/-KTS splice isoforms. Hum Mol Genet 7:709–714PubMedGoogle Scholar
  155. 155.
    Klein G, Langegger M, Goridis C, Ekblom P (1988) Neural cell adhesion molecules during embryonic induction and development of the kidney. Development 102(4):749–761PubMedGoogle Scholar
  156. 156.
    Kleinman LI, Lubbe RJ (1972) Factors affecting the maturation of glomerular filtration rate and renal plasma flow in the new-born dog. J Physiol 223(2):395–409PubMedCentralPubMedGoogle Scholar
  157. 157.
    Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132(12):2809–2823PubMedGoogle Scholar
  158. 158.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181PubMedCentralPubMedGoogle Scholar
  159. 159.
    Kohan DE (2008) Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 74(4):427–437PubMedGoogle Scholar
  160. 160.
    Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83PubMedGoogle Scholar
  161. 161.
    Koleda P, Apoznanski W, Wozniak Z, Rusiecki L, Szydelko T, Pilecki W, Polok M, Kalka D, Pupka A (2012) Changes in interstitial cell of Cajal-like cells density in congenital ureteropelvic junction obstruction. Int Urol Nephrol 44(1):7–12PubMedCentralPubMedGoogle Scholar
  162. 162.
    Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167(6):1195–1204PubMedCentralPubMedGoogle Scholar
  163. 163.
    Korostylev A, Worzfeld T, Deng S, Friedel RH, Swiercz JM, Vodrazka P, Maier V, Hirschberg A, Ohoka Y, Inagaki S, Offermanns S, Kuner R (2008) A functional role for semaphorin 4D/plexin B1 interactions in epithelial branching morphogenesis during organogenesis. Development 135(20):3333–3343PubMedGoogle Scholar
  164. 164.
    Kreidberg JA (2003) Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol 14(3):806–814PubMedGoogle Scholar
  165. 165.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedGoogle Scholar
  166. 166.
    Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMedGoogle Scholar
  167. 167.
    Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64(11):965–974PubMedGoogle Scholar
  168. 168.
    Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887PubMedGoogle Scholar
  169. 169.
    Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132(3):529–539PubMedGoogle Scholar
  170. 170.
    Levitt MA, Pena A (2007) Anorectal malformations. Orphanet J Rare Dis 2Google Scholar
  171. 171.
    Liang FX, Bosland MC, Huang H, Romih R, Baptiste S, Deng FM, Wu XR, Shapiro E, Sun TT (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171(5):835–844PubMedCentralPubMedGoogle Scholar
  172. 172.
    Lien SC, Usami S, Chien S, Chiu JJ (2006) Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cellular Signalling 18:1270–1278Google Scholar
  173. 173.
    Limwongse C, Clarren SK, Cassidy SB (1999) Syndromes and malformations of the urinary tract. In: Barratt TM, Avner ED, Harmon WE (eds) Pediatric nephrology, 3rd edn. Williams & Wilkins, Baltimore, pp 427–452Google Scholar
  174. 174.
    Lin Y, Zhang S, Tuukkanen J, Peltoketo H, Pihlajaniemi T, Vainio S (2003) Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. Int J Dev Biol 47(1):3–13PubMedGoogle Scholar
  175. 175.
    Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rß signaling controls mesangial cell development in kidney glomeruli. Development 125:3313–3322PubMedGoogle Scholar
  176. 176.
    Little M, Georgas K, Pennisi D, Wilkinson L (2010) Kidney development: two tales of tubulogenesis. Curr Top Dev Biol 90:193–229PubMedGoogle Scholar
  177. 177.
    Little MH, Williamson KA, Mannens M, Kelsey A, Gosden C, Hastie ND, van Heyningen V (1993) Evidence that WT1 mutations in Denys-Drash syndrome patients may act in a dominant-negative fashion. Hum Mol Genet 2(3):259–264PubMedGoogle Scholar
  178. 178.
    Liu W, Li Y, Cunha S, Hayward G, Baskin L (2000) Diffusable growth factors induce bladder smooth muscle differentiation. In Vitro Cell Dev Biol 36(7):476–484Google Scholar
  179. 179.
    Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41(12):1295–1302PubMedCentralPubMedGoogle Scholar
  180. 180.
    Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80(4):616–632PubMedCentralPubMedGoogle Scholar
  181. 181.
    Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21(6):898–910PubMedGoogle Scholar
  182. 182.
    Lye CM, Fasano L, Woolf AS (2010) Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol 21(1):24–30PubMedGoogle Scholar
  183. 183.
    Mackenzie HS, Lawler EV, Brenner BM (1996) Congenital oligonephropathy: the fetal flaw in essential hypertension? Kidney Int 55:S30–S34Google Scholar
  184. 184.
    Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114:274–280PubMedGoogle Scholar
  185. 185.
    Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, Nigam SK (2007) Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 18(12):3147–3155PubMedGoogle Scholar
  186. 186.
    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130(14):3175–3185PubMedGoogle Scholar
  187. 187.
    Manalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58(2):770–773PubMedGoogle Scholar
  188. 188.
    Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314(1):112–126PubMedCentralPubMedGoogle Scholar
  189. 189.
    Matsuno T, Tokunaka S, Koyanagi T (1984) Muscular development in the urinary tract. J Urol 132(1):148–152PubMedGoogle Scholar
  190. 190.
    Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220(1):62–75PubMedGoogle Scholar
  191. 191.
    McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502PubMedGoogle Scholar
  192. 192.
    McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082PubMedGoogle Scholar
  193. 193.
    McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A 103(18):6952–6957PubMedCentralPubMedGoogle Scholar
  194. 194.
    McPherson E, Carey J, Kramer A, Hall JG, Pauli RM, Schimke RN, Tasin MH (1987) Dominantly inherited renal adysplasia. Am J Med Genet 26(4):863–872PubMedGoogle Scholar
  195. 195.
    Michael L, Davies JA (2004) Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat 204(4):241–255PubMedCentralPubMedGoogle Scholar
  196. 196.
    Michos O (2009) Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev 19(5):484–490PubMedCentralPubMedGoogle Scholar
  197. 197.
    Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6(1):e1000809PubMedCentralPubMedGoogle Scholar
  198. 198.
    Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134(13):2397–2405PubMedGoogle Scholar
  199. 199.
    Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131(14):3401–3410PubMedGoogle Scholar
  200. 200.
    Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217(2):278–289PubMedGoogle Scholar
  201. 201.
    Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, Lee B (2002) Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest 109(8):1065–1072PubMedCentralPubMedGoogle Scholar
  202. 202.
    Miner JH, Sanes JR (1994) Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol 127(3):879–891PubMedGoogle Scholar
  203. 203.
    Miner JH, Sanes JR (1996) Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol 135(5):1403–1413PubMedGoogle Scholar
  204. 204.
    Miyamoto N, Yoshida M, Kuratani S, Matuso I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664PubMedGoogle Scholar
  205. 205.
    Miyazaki Y, Ichikawa I (2003) Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT. Pediatr Int: Official J Jpn Pediatr Soc 45(5):598–604Google Scholar
  206. 206.
    Miyazaki Y, Oshima K, Fogo A, Hogan BLM, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedCentralPubMedGoogle Scholar
  207. 207.
    Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2003) Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int 63(3):835–844PubMedGoogle Scholar
  208. 208.
    Miyazaki Y, Tsuchida S, Nishimura H, Pope JC IV, Harris RC, McKanna JM, Inagami T, Hogan BLM, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497PubMedCentralPubMedGoogle Scholar
  209. 209.
    Montesano R, Soriano JV, Pepper MS, Orci L (1997) Induction of epithelial branching tubulogenesis in vitro. J Cell Physiol 173:152–161PubMedGoogle Scholar
  210. 210.
    Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedGoogle Scholar
  211. 211.
    Moritz KM, Mazzuca MQ, Siebel AL, Mibus A, Arena D, Tare M, Owens JA, Wlodek ME (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 587(Pt 11):2635–2646PubMedCentralPubMedGoogle Scholar
  212. 212.
    Mugford JW, Sipila P, Kobayashi A, Behringer RR, McMahon AP (2008) Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 319(2):396–405PubMedCentralPubMedGoogle Scholar
  213. 213.
    Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324(1):88–98PubMedCentralPubMedGoogle Scholar
  214. 214.
    Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333(2):312–323PubMedCentralPubMedGoogle Scholar
  215. 215.
    Murawski IJ, Gupta IR (2006) Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 69(2):105–117PubMedGoogle Scholar
  216. 216.
    Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, Morgan K, Gupta IR (2010) The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int 78(3):269–278PubMedGoogle Scholar
  217. 217.
    Murawski IJ, Watt CL, Gupta IR (2011) Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol 26(9):1513–1522PubMedGoogle Scholar
  218. 218.
    Murnaghan GF (1958) The dynamics of the renal pelvis and ureter with reference to congenital hydronephrosis. Br J Urol 30(3):321–329PubMedGoogle Scholar
  219. 219.
    Nagata M, Nakayama K, Terada Y, Hoshi S, Watanabe T (1998) Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol 153(5):1511–1520PubMedCentralPubMedGoogle Scholar
  220. 220.
    Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239PubMedGoogle Scholar
  221. 221.
    Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, Nishi M, Jishage K, Minowa O, Noda T (2003) Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development 130(19):4751–4759PubMedGoogle Scholar
  222. 222.
    Nakayama M, Nozu K, Goto Y, Kamei K, Ito S, Sato H, Emi M, Nakanishi K, Tsuchiya S, Iijima K (2010) HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 25(6):1073–1079PubMedGoogle Scholar
  223. 223.
    Neiss WF (1982) Histogenesis of the loop of Henle in the rat kidney. Anat Embryol (Berl) 164(3):315–330Google Scholar
  224. 224.
    Neiss WF, Klehn KL (1981) The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry 73(2):251–268PubMedGoogle Scholar
  225. 225.
    Nelson RG, Morgenstern H, Bennett PH (1998) Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 47(9):1489–1493PubMedGoogle Scholar
  226. 226.
    Netter FH, Cochard LR (2002) Netter’s Atlas of human embryology. Icon Learning Systems, TeterboroGoogle Scholar
  227. 227.
    Newman J, Antonakopoulos GN (1989) The fine structure of the human fetal urinary bladder. Development and maturation. A light, transmission and scanning electron microscopic study. J Anat 166:135–150PubMedCentralPubMedGoogle Scholar
  228. 228.
    Nie X, Xu J, El-Hashash A, Xu PX (2011) Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 352(1):141–151PubMedCentralPubMedGoogle Scholar
  229. 229.
    Nievelstein RA, van der Werff JF, Verbeek FJ, Valk J, Vermeij-Keers C (1998) Normal and abnormal embryonic development of the anorectum in human embryos. Teratology 57(2):70–78PubMedGoogle Scholar
  230. 230.
    Niimura F, Labostky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T et al (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMedCentralPubMedGoogle Scholar
  231. 231.
    Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA, Hogan BML, Fogo A, Brock JW, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10PubMedGoogle Scholar
  232. 232.
    Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMedGoogle Scholar
  233. 233.
    Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin ß2: nephrosis despite molecular compensation by laminin ß1. Nat Genet 10:400–406PubMedGoogle Scholar
  234. 234.
    Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201PubMedGoogle Scholar
  235. 235.
    O’Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ (2011) Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 358(2):318–330PubMedCentralPubMedGoogle Scholar
  236. 236.
    Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108PubMedGoogle Scholar
  237. 237.
    Oh S, Shin S, Janknecht R (2012) ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 1826(1):1–12PubMedCentralPubMedGoogle Scholar
  238. 238.
    Olatunbosun ST, Bella AF (2000) Relationship between height, glucose intolerance, and hypertension in an urban African black adult population: a case for the “thrifty phenotype” hypothesis? J Natl Med Assoc 92(6):265–268PubMedCentralPubMedGoogle Scholar
  239. 239.
    Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133(1):151–161PubMedGoogle Scholar
  240. 240.
    Osathanondh V, Potter EL (1963) Development of human kidney as shown by microdissection. II. Renal pelvis, calyces, and papillae. Arch Pathol 76:277–289PubMedGoogle Scholar
  241. 241.
    Osathanondh V, Potter EL (1963) Development of human kidney as shown by microdissection.III. Formation and interrelationship of collecting tubules and nephrons. Arch Pathol 76:66–78Google Scholar
  242. 242.
    Osathanondh V, Potter EL (1966) Development of human kidney as shown by microdissection. Arch Pathol 82:391–402PubMedGoogle Scholar
  243. 243.
    Palmer RE, Kotsianti A, Cadman B, Boyd T, Gerald W, Haber DA (2001) WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr Biol 11(22):1815–1809Google Scholar
  244. 244.
    Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134(13):2533–2539PubMedGoogle Scholar
  245. 245.
    Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, Miyagawa K, Christie S, Doig J, Harrison DJ, Porteous DJ, Brookes AJ, Hooper ML, Hastie ND (1999) A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci U S A 96(6):2931–2936PubMedCentralPubMedGoogle Scholar
  246. 246.
    Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307PubMedGoogle Scholar
  247. 247.
    Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288(2):571–581PubMedGoogle Scholar
  248. 248.
    Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D (1991) Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 5:1345–1356PubMedGoogle Scholar
  249. 249.
    Pena A, Levitt MA, Hong A, Midulla P (2004) Surgical management of cloacal malformations: a review of 339 patients. J Pediatr Surg 39(3):470–479, discussion 470-479PubMedGoogle Scholar
  250. 250.
    Pepicelli CV, Kispert A, Rowitch D, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198PubMedGoogle Scholar
  251. 251.
    Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132(17):3859–3871PubMedGoogle Scholar
  252. 252.
    Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 247(1):26–46PubMedGoogle Scholar
  253. 253.
    Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, Lee EJ, Huang SP, Saarmas M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedGoogle Scholar
  254. 254.
    Pini Prato A, Musso M, Ceccherini I, Mattioli G, Giunta C, Ghiggeri GM, Jasonni V (2009) Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association. Medicine 88(2):83–90PubMedGoogle Scholar
  255. 255.
    Piscione TD, Phan T, Rosenblum ND (2001) BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am J Physiol 280:F19–F33Google Scholar
  256. 256.
    Piscione TD, Rosenblum ND (1999) The malformed kidney: disruption of glomerular and tubular development. Clin Genet 56(5):343–358Google Scholar
  257. 257.
    Piscione TD, Waters AM (2008) Structural and functional development of the kidney. In: Geary DF, Schaefer F (eds) Comprehensive pediatric nephrology, 1st edn. Mosby, Inc., Philadelphia, pp 91–130Google Scholar
  258. 258.
    Piscione TD, Wu MY, Quaggin SE (2004) Expression of hairy/enhancer of split genes, Hes1 and Hes5, during murine nephron morphogenesis. Gene Expr Patterns 4(6):707–711PubMedGoogle Scholar
  259. 259.
    Piscione TD, Yager TD, Gupta IR, Grinfeld B, Pei Y, Attisano L, Wrana JL, Rosenblum ND (1997) BMP-2 and OP-1 exert direct and opposite effects on renal branching morphogenesis. Am J Physiol 273:F961–F975PubMedGoogle Scholar
  260. 260.
    Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, Bates CM (2006) Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 291(2):325–339PubMedGoogle Scholar
  261. 261.
    Potter EL (1972) Normal and abnormal development of the kidney. Year Book Medical Publishers Inc, ChicagoGoogle Scholar
  262. 262.
    Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Human Genet 109(6):678–680Google Scholar
  263. 263.
    Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 136(12):1995–2004PubMedCentralPubMedGoogle Scholar
  264. 264.
    Price KL, Long DA, Jina N, Liapis H, Hubank M, Woolf AS, Winyard PJ (2007) Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiol Genom 28(2):193–202Google Scholar
  265. 265.
    Pulido R, Krueger NX, Serra-Pages C, Saito H, Streuli M (1995) Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. J Biol Chem 270(12):6722–6728PubMedGoogle Scholar
  266. 266.
    Qazi Q, Masakawa A, Milman D, McGann B, Chua A, Haller J (1979) Renal anomalies in fetal alcohol syndrome. Pediatrics 63(6):886–889PubMedGoogle Scholar
  267. 267.
    Qi BQ, Beasley SW, Frizelle FA (2002) Clarification of the processes that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg 37(9):1305–1312PubMedGoogle Scholar
  268. 268.
    Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109(2):123–135PubMedGoogle Scholar
  269. 269.
    Qiao J, Sakurai H, Nigam SK (1999) Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci U S A 96:7330–7335PubMedCentralPubMedGoogle Scholar
  270. 270.
    Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMedGoogle Scholar
  271. 271.
    Qiao S, Iwashita T, Furukawa T, Yamamoto M, Sobue G, Takahashi M (2001) Differential effects of leukocyte common antigen-related protein on biochemical and biological activities of RET-MEN2A and RET-MEN2B mutant proteins. J Biol Chem 276(12):9460–9467PubMedGoogle Scholar
  272. 272.
    Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J (1999) The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126:5771–5783PubMedGoogle Scholar
  273. 273.
    Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J (2002) Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstetr 266(3):163–167Google Scholar
  274. 274.
    Raatikainen-Ahokas A, Hytonen M, Tenhunen A, Sainio K, Sariola H (2000) Bmp-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn 217:146–158PubMedGoogle Scholar
  275. 275.
    Ricono JM, Xu YC, Arar M, Jin DC, Barnes JL, Abboud HE (2003) Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors. J Histochem Cytochem 51(2):141–150PubMedGoogle Scholar
  276. 276.
    Robboy SJ, Taguchi O, Cunha GR (1982) Normal development of the human female reproductive tract and alterations resulting from experimental exposure to diethylstilbestrol. Human Pathol 13(3):190–198Google Scholar
  277. 277.
    Robert B, St John PL, Hyink DP, Abrahamson DR (1996) Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol 271(3 Pt 2):F744–F753PubMedGoogle Scholar
  278. 278.
    Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7(1):17–25PubMedGoogle Scholar
  279. 279.
    Rogers SA, Ryan G, Purchio AF, Hammerman MR (1993) Metanephric transforming growth factor-b1 regulates nephrogenesis in vitro. Am J Physiol 264:F996–F1002PubMedGoogle Scholar
  280. 280.
    Roodhooft AM, Birnholz JC, Holmes LB (1984) Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med 310(21):1341–1345PubMedGoogle Scholar
  281. 281.
    Ruano-Gil D, Coca-Payeras A, Tejedo-Mateu A (1975) Obstruction and normal recanalization of the ureter in the human embryo. Its relation to congenital ureteric obstruction. Eur Urol 1(6):287–293PubMedGoogle Scholar
  282. 282.
    Rudolph AM, Heymann MA (1970) Circulatory changes during growth in the fetal lamb. Circ Res 26(3):289–299PubMedGoogle Scholar
  283. 283.
    Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH (2011) Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol 360(1):110–122PubMedGoogle Scholar
  284. 284.
    Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40(8):1010–1015PubMedGoogle Scholar
  285. 285.
    Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, Barsh G, Cordes S (2002) The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol 249(1):16–29PubMedGoogle Scholar
  286. 286.
    Sainio K, Hellstedt P, Kreidberg JA, Saxen L, Sariola H (1997) Differential regulation of two sets of mesonephric tubules by WT-1. Development 124:1293–1299PubMedGoogle Scholar
  287. 287.
    Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H (1994) Neuronal characteristics in embryonic renal stroma. Int J Dev Biol 38(1):77–84PubMedGoogle Scholar
  288. 288.
    Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMedGoogle Scholar
  289. 289.
    Saisawat P, Tasic V, Vega-Warner V, Kehinde EO, Gunther B, Airik R, Innis JW, Hoskins BE, Hoefele J, Otto EA, Hildebrandt F (2012) Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 81(2):196–200PubMedGoogle Scholar
  290. 290.
    Sakurai H, Barros EJ, Tsukamoto T, Barasch J, Nigam SK (1997) An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors. Proc Natl Acad Sci U S A 94:6279–6284PubMedCentralPubMedGoogle Scholar
  291. 291.
    Sakurai H, Nigam S (1997) Transforming growth factor-beta selectively inhibits branching morphogenesis but not tubulogenesis. Am J Physiol 272(1 Pt 2):F139–F146PubMedGoogle Scholar
  292. 292.
    Salerno A, Kohlhase J, Kaplan BS (2000) Townes-Brocks syndrome and renal dysplasia: a novel mutation in the SALL1 gene. Pediatr Nephrol 14(1):25–28PubMedGoogle Scholar
  293. 293.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedGoogle Scholar
  294. 294.
    Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343PubMedGoogle Scholar
  295. 295.
    Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9(4):358–364PubMedGoogle Scholar
  296. 296.
    Sariola H, Ekblom P, Lehtonen E, Saxen L (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol 96(2):427–435PubMedGoogle Scholar
  297. 297.
    Sariola H, Holm K, Henke-Fahle S (1988) Early innervation of the metanephric kidney. Development 104(4):589–599PubMedGoogle Scholar
  298. 298.
    Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeGoogle Scholar
  299. 299.
    Schimmenti LA, Pierpont ME, Carpenter BL, Kashtan CE, Johnson MR, Dobyns WB (1995) Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies. Am J Med Genet 59(2):204–208PubMedGoogle Scholar
  300. 300.
    Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, Bottinger E, Barasch J (2005) Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 16(7):1993–2002PubMedGoogle Scholar
  301. 301.
    Schmidt IM, Damgaard IN, Boisen KA, Mau C, Chellakooty M, Olgaard K, Main KM (2004) Increased kidney growth in formula-fed versus breast-fed healthy infants. Pediatr Nephrol 19(10):1137–1144PubMedGoogle Scholar
  302. 302.
    Schonfelder EM, Knuppel T, Tasic V, Miljkovic P, Konrad M, Wuhl E, Antignac C, Bakkaloglu A, Schaefer F, Weber S (2006) Mutations in Uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am J Kidney Dis 47(6):1004–1012PubMedGoogle Scholar
  303. 303.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383PubMedGoogle Scholar
  304. 304.
    Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k - mutant mice result from defects in ureteric bud development. Development 122:1919–1929PubMedGoogle Scholar
  305. 305.
    Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64(5):1588–1604PubMedGoogle Scholar
  306. 306.
    Seifert AW, Bouldin CM, Choi KS, Harfe BD, Cohn MJ (2009) Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development 136(23):3949–3957PubMedCentralPubMedGoogle Scholar
  307. 307.
    Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A (2003) Chronic renal insufficiency in children: the 2001 annual report of the NAPRTCS. Pediatr Nephrol 18(8):796–804PubMedGoogle Scholar
  308. 308.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228PubMedCentralPubMedGoogle Scholar
  309. 309.
    Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, D’Agati V, Costantini F (2005) The role of GDNF in patterning the excretory system. Dev Biol 283(1):70–84PubMedGoogle Scholar
  310. 310.
    Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8(1):65–74PubMedGoogle Scholar
  311. 311.
    Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430PubMedGoogle Scholar
  312. 312.
    Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H (2000) Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol 20(18):6913–6922PubMedCentralPubMedGoogle Scholar
  313. 313.
    Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274(46):32961–32969PubMedGoogle Scholar
  314. 314.
    Shiroyanagi Y, Liu B, Cao M, Agras K, Li J, Hsieh MH, Willingham EJ, Baskin LS (2007) Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation. Differentiation 75(10):968–977PubMedGoogle Scholar
  315. 315.
    Sichieri R, Siqueira KS, Pereira RA, Ascherio A (2000) Short stature and hypertension in the city of Rio de Janeiro, Brazil. Public Health Nutr 3(1):77–82PubMedGoogle Scholar
  316. 316.
    Sims-Lucas S, Argyropoulos C, Kish K, McHugh K, Bertram JF, Quigley R, Bates CM (2009) Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys. J Am Soc Nephrol 20(12):2525–2533PubMedCentralPubMedGoogle Scholar
  317. 317.
    Skibo LK, Lyons EA, Levi CS (1992) First-trimester umbilical cord cysts. Radiology 182(3):719–722PubMedGoogle Scholar
  318. 318.
    Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82(2):344–351PubMedCentralPubMedGoogle Scholar
  319. 319.
    Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6 Pt 1):2420–2422PubMedGoogle Scholar
  320. 320.
    Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF ß-receptor mutant mice. Genes Dev 8:1888–1896PubMedGoogle Scholar
  321. 321.
    Spencer J, Wang Z, Hoy W (2001) Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis 37(5):915–920PubMedGoogle Scholar
  322. 322.
    Spitzer A, Brandis M (1974) Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest 53(1):279–287PubMedCentralPubMedGoogle Scholar
  323. 323.
    Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683PubMedGoogle Scholar
  324. 324.
    Surendran K, Selassie M, Liapis H, Krigman H, Kopan R (2010) Reduced Notch signaling leads to renal cysts and papillary microadenomas. J Am Soc Nephrol 21(5):819–832PubMedCentralPubMedGoogle Scholar
  325. 325.
    Tacciuoli M, Lotti T, de Matteis A, Laurenti C (1975) Development of the smooth muscle of the ureter and vesical trigone: histological investigation in human fetus. Eur Urol 1(6):282–286PubMedGoogle Scholar
  326. 326.
    Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y, Samuelsson T, Mostad P, Lundin S, Miura N, Sado Y, Alitalo K, Quaggin SE, Tryggvason K, Betsholtz C (2006) Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J 25(5):1160–1174PubMedCentralPubMedGoogle Scholar
  327. 327.
    Tanagho EA, Meyers FH, Smith DR (1968) The trigone: anatomical and physiological considerations. I. In relation to the ureterovesical junction. J Urol 100(5):623–632PubMedGoogle Scholar
  328. 328.
    Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243(1):128–136PubMedGoogle Scholar
  329. 329.
    Tang MJ, Worley D, Sanicola M, Dressler GR (1998) The RET-glial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. J Cell Biol 142(5):1337–1345PubMedCentralPubMedGoogle Scholar
  330. 330.
    Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, Yamaguchi TP, Rodriguez LG, Perantoni AO (2011) Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol 352(1):58–69PubMedCentralPubMedGoogle Scholar
  331. 331.
    Tasian G, Cunha G, Baskin L (2010) Smooth muscle differentiation and patterning in the urinary bladder. Differentiation 80(2–3):106–117PubMedCentralPubMedGoogle Scholar
  332. 332.
    Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26(6):897–903PubMedCentralPubMedGoogle Scholar
  333. 333.
    Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, Eccles M, Discenza M, Pelletier J, Goodyer P (2006) PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem 281(18):12705–12712PubMedGoogle Scholar
  334. 334.
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM (1995) c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280(1):97–111PubMedGoogle Scholar
  335. 335.
    Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121(12):4057–4065PubMedGoogle Scholar
  336. 336.
    Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223(1):77–90PubMedGoogle Scholar
  337. 337.
    Tufro A, Norwood VF, Carey RM, Gomez RA (1999) Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol 10(10):2125–2134PubMedGoogle Scholar
  338. 338.
    Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125(5–6):558–568PubMedCentralPubMedGoogle Scholar
  339. 339.
    Uetani N, Bertozzi K, Chagnon MJ, Hendriks W, Tremblay ML, Bouchard M (2009) Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J Clin Invest 119(4):924–935PubMedCentralPubMedGoogle Scholar
  340. 340.
    Uetani N, Bouchard M (2009) Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet 75(4):307–317PubMedGoogle Scholar
  341. 341.
    van der Putte SC (2005) The development of the perineum in the human. A comprehensive histological study with a special reference to the role of the stromal components. Adv Anat Embryol Cell Biol 177:1–131PubMedGoogle Scholar
  342. 342.
    Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406(6794):419–422PubMedGoogle Scholar
  343. 343.
    Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci U S A 93(20):10657–10661PubMedCentralPubMedGoogle Scholar
  344. 344.
    Veille JC, McNeil S, Hanson R, Smith N (1998) Renal hemodynamics: longitudinal study from the late fetal life to one year of age. J Matern Fetal Investig 8(1):6–10PubMedGoogle Scholar
  345. 345.
    Verschueren K, Dewulf N, Goumans MJ, Lonnoy O, Feijen A, Grimsby S, Vande Spiegle K, ten Dijke P, Moren A, Vanscheeuwijck P, Heldin C-H, Miyazono K, Mummery C, Van Den Eijnden-Van Raaij J, Huylebroeck D (1995) Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mech Dev 52:109–123PubMedGoogle Scholar
  346. 346.
    Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, Shapiro E, Hensle T, Lambert S, Mendelsohn C (2007) The development of the bladder trigone, the center of the anti-reflux mechanism. Development 134(20):3763–3769PubMedGoogle Scholar
  347. 347.
    Wagner CA, Devuyst O, Bourgeois S, Mohebbi N (2009) Regulated acid-base transport in the collecting duct. Pflugers Arch 458(1):137–156PubMedGoogle Scholar
  348. 348.
    Wagner KD, Wagner N, Schedl A (2003) The complex life of WT1. J Cell Sci 116(Pt 9):1653–1658PubMedGoogle Scholar
  349. 349.
    Wagner N, Wagner KD, Xing Y, Scholz H, Schedl A (2004) The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J Am Soc Nephrol 15(12):3044–3051PubMedGoogle Scholar
  350. 350.
    Wang GJ, Brenner-Anantharam A, Vaughan ED, Herzlinger D (2009) Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol 181(1):401–407PubMedGoogle Scholar
  351. 351.
    Watanabe T, Costantini F (2004) Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 271(1):98–108PubMedGoogle Scholar
  352. 352.
    Weber S (2012) Novel genetic aspects of congenital anomalies of kidney and urinary tract. Curr Opin Pediatr 24(2):212–218PubMedGoogle Scholar
  353. 353.
    Weber S, Landwehr C, Renkert M, Hoischen A, Wuhl E, Denecke J, Radlwimmer B, Haffner D, Schaefer F, Weber RG (2011) Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant 26(1):136–143PubMedGoogle Scholar
  354. 354.
    Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17(10):2864–2870PubMedGoogle Scholar
  355. 355.
    Weiss JP (1988) Embryogenesis of ureteral anomalies: a unifying theory. Aust N Z J Surg 58(8):631–638PubMedGoogle Scholar
  356. 356.
    Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16(11):1423–1432PubMedCentralPubMedGoogle Scholar
  357. 357.
    Wesson MB (1925) Anatomical, embryological, and physiological studies of the trigone and bladder neck. J Urol 4:280–306Google Scholar
  358. 358.
    White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137(11):1863–1873PubMedCentralPubMedGoogle Scholar
  359. 359.
    Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C (2005) Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 48(2):131–144PubMedGoogle Scholar
  360. 360.
    Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116PubMedGoogle Scholar
  361. 361.
    Woodburne RT (1965) The ureter, ureterovesical junction, and vesical trigone. Anat Rec 151:243–249PubMedGoogle Scholar
  362. 362.
    Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65(4):1339–1348PubMedGoogle Scholar
  363. 363.
    Woolf AS, Kolatsi-Joannou M, Hardman P, Andermarcher E, Moorby C, Fine LG, Jat PS, Noble MD, Gherardi E (1995) Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol 128(1–2):171–184PubMedGoogle Scholar
  364. 364.
    Woolf AS, Winyard P, Hermanns MH, Welham SJ (2003) 21. Maldevelopment of the human kidney and lower urinary tract: an overview. In: Vize PD, Woolf AS, Bard JB (eds) The kidney: from normal development to congenital disease, 1st edn. Elsevier Science, San Diego, pp 377–393Google Scholar
  365. 365.
    Xiao J, Nguyen TV, Ngui K, Strijbos PJ, Selmer IS, Neylon CB, Furness JB (2004) Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system. Neuroscience 129(3):603–614PubMedGoogle Scholar
  366. 366.
    Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117PubMedGoogle Scholar
  367. 367.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130(14):3085–3094PubMedCentralPubMedGoogle Scholar
  368. 368.
    Yamaguchi OA, Constantinou CE (1989) Renal calyceal and pelvic contraction rhythms. Am J Physiol 257(4 Pt 2):R788–R795PubMedGoogle Scholar
  369. 369.
    Yang Y, Jeanpierre C, Dressler GR, Lacoste M, Niaudet P, Gubler MC (1999) WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol 154(1):181–192PubMedCentralPubMedGoogle Scholar
  370. 370.
    Yeger H, Forget D, Alami J, Williams BR (1996) Analysis of WT1 gene expression during mouse nephrogenesis in organ culture. In Vitro Cell Dev Biol 32:496–504Google Scholar
  371. 371.
    Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127:621–630PubMedGoogle Scholar
  372. 372.
    Yosypiv IV (2009) Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol 24(6):1113–1120PubMedCentralPubMedGoogle Scholar
  373. 373.
    Yosypiv IV, Boh MK, Spera MA, El-Dahr SS (2008) Downregulation of Spry-1, an inhibitor of GDNF/Ret, causes angiotensin II-induced ureteric bud branching. Kidney Int 74(10):1287–1293PubMedCentralPubMedGoogle Scholar
  374. 374.
    Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129(22):5301–5312PubMedGoogle Scholar
  375. 375.
    Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136(1):161–171PubMedCentralPubMedGoogle Scholar
  376. 376.
    Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986PubMedGoogle Scholar
  377. 377.
    Zhang S, Lin Y, Itaranta P, Yagi A, Vainio S (2001) Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech Dev 109(2):367–370PubMedGoogle Scholar
  378. 378.
    Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19(10):2027–2034PubMedCentralPubMedGoogle Scholar
  379. 379.
    Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276(2):403–415PubMedCentralPubMedGoogle Scholar
  380. 380.
    Zimanyi MA, Bertram JF, Black MJ (2002) Nephron number and blood pressure in rat offspring with maternal high-protein diet. Pediatr Nephrol 17(12):1000–1004PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joana Rosa Pereira dos Santos
    • 1
    Email author
  • Tino D. Piscione
    • 1
  1. 1.Division of Nephrology, Department of PediatricsThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations