Skip to main content

Strategies to Discover Novel Antimicrobials to Cope with Emerging Medical Needs

  • Chapter
  • First Online:

Abstract

The antibacterial screening strategies developed since the 1990s have seen an important evolution from the low throughput early phenotypic assays used to identify compounds targeting specific pathogens to target-based whole cell assays and structured-based design derived from in silico screening. Whereas empirical and target-based methods have been widely applied to screen for antibacterial agents, novel approaches such as structure-based drug design have proved to be a successful approach in other therapeutic areas, but they have not yet been widely applied to the development of antibacterial drugs. The objective of all these approaches has been the discovery of chemically novel leads that inhibit new molecular targets, or inhibit established targets by mechanisms distinct from those exploited by existing drugs. The focus of this chapter is to review a selection of different drug discovery paradigms that were developed to deliver novel antibacterial drugs as inhibitors of old and new essential bacterial targets proposed from single target to genome-wide initiatives. It also discusses some new trends in antibacterial discovery that have emerged with the rapid evolution and spread of antibiotic multi-resistances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AS-RNA:

Antisense ribonucleic acid

AISS:

Antisense-induced strain sensitivity

A-KDO:

Keto-deoxyoctulosonate

ELT:

Encoded library technology

FAS:

Fatty acid synthesis

FBLD:

Fragment-based lead discovery

GlmU:

UDP-GlcNAc diphosphorylase/GlcNAc-1-P N-acetyltransferase

HTS:

High throughput screening

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

LPS:

Lipopolysaccharide

LpxC:

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase

LtaS:

Lipoteichoic acid synthase

MOA:

Mode of action

MRSA:

Methicillin-resistant Staphylococcus aureus

MDRSA:

Multidrug-resistant Staphylococcus aureus

MIC:

Minimal inhibitory concentration

4MUA:

4-methylumbelliferyl acetate

NMR:

Nuclear magnetic resonance

OD:

Optical density

PDF:

Peptide deformylase

PgdA:

Peptidoglycan N-acetylglucosamine deacetylase A

pNPA:

P-nitrophenyl acetate

RNR:

Ribonucleotide reductase

SBDD:

Structure-based drug discovery

SOS:

Bacterial SOS response

UDP-gal:

Uridine diphosphate galactose

UDP-glucose:

Uridine diphosphate glucose

UPPS:

Undecaprenyl diphosphate synthase

References

  • Barb AW, Zhou P (2008) Mechanism and Inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 9:9–15

    Article  PubMed  CAS  Google Scholar 

  • Barb A, Jiang L, Raetz C, Zhou P (2007) Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci U S A 104:18433–18438

    Article  PubMed  CAS  Google Scholar 

  • Benowitz AB, Hoover JL, David J, Payne DJ (2010) Antibacterial drug discovery in the age of resistance. Microbe 5:390–396

    Google Scholar 

  • Bernander R, Akerlund T, Nordström K (1995) Inhibition and restart of initiation chromosome replication: effects on exponentially growing Escherichia coli cells. J Bacteriol 177:1670–1682

    PubMed  CAS  Google Scholar 

  • Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W (2012) Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 421:657–666

    Article  PubMed  CAS  Google Scholar 

  • Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot 64:413–425

    Article  PubMed  CAS  Google Scholar 

  • Carl PL (1970) Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet 109:107–122

    Article  PubMed  CAS  Google Scholar 

  • Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57:213–218

    PubMed  CAS  Google Scholar 

  • Chan DC, Laughton CA, Queener SF, Stevens MF (2001) Structural studies on bioactive compounds. 34. Design, synthesis, and biological evaluation of triazenyl-substituted pyrimethamine inhibitors of Pneumocystis carinii dihydrofolate reductase. J Med Chem 44:2555–2564

    Article  PubMed  CAS  Google Scholar 

  • Chan PF, Holmes DJ, Payne DJ (2004) Finding the gems using genomic discovery: antibacterial drug discovery strategies—the successes and the challenges. Drug Discov Today 1:519–527

    CAS  Google Scholar 

  • Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z (2000) Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Hackbarth C, Ni ZJ, Wu C, Wang W, Jain R, He Y, Bracken K, Weidmann B, Patel DV, Trias J, White RJ, Yuan Z (2004) Peptide deformylase inhibitors as antibacterial agents: identification of VRC3375, a proline-3-alkylsuccinyl hydroxamate derivative, by using an integrated combinatorial and medicinal chemistry approach. Antimicrob Agents Chemother 48:250–261

    Article  PubMed  CAS  Google Scholar 

  • Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang E (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75

    Article  PubMed  CAS  Google Scholar 

  • D’Elia M, Henderson J, Beveridge T, Heinrichs D, Brown E (2009) The N-acetylmannosamine transferase catalyzes the first committed step in teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 191:4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Darst SA (2001) Bacterial RNA polymerase. Curr Opin Struct Biol 11:155–162

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz M, Robles A, González I, Salazar O, Feliz J, Cercenado MI, Martín J, González del Val A, Tormo JR, Hernández P, Onishi R, Parish C, Zink DL, Cully D, Genilloud O, Díez MT, Peláez F, Vicente MF (2006) Ramoplanin-related components produced by Actinomycetes. The 2nd FEMS Congreso of European Microbiologists, Madrid, Spain

    Google Scholar 

  • De la Cruz M, El Aouad N, Jiménez E, Palomo S, González I, Tormo R, Martín J, Genilloud O, Reyes F, Vicente F (2011) Estudio preliminar de la caracterización biológica y química de análogos de ramoplanina aislados de Actinomicetos. XXIII Congreso de la Sociedad Española de Microbiología. SEM2011. Salamanca, Spain

    Google Scholar 

  • DeCenzo M, Kuranda M, Cohen S, Babiak J, Jiang ZD, Su D, Hickey M, Sancheti P, Bradford PA, Youngman P, Projan S, Rothstein DM (2002) Identification of compounds that inhibit late steps of peptidoglycan synthesis in bacteria. J Antibiot 55:288–295

    Article  PubMed  CAS  Google Scholar 

  • DeWeese-Scott C, Moult J (2004) Molecular modeling of protein function regions. Proteins 55:942–961

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99:187–198

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430

    Article  PubMed  CAS  Google Scholar 

  • Donald RG, Skwish S, Forsyth RA, Anderson JW, Zhong T, Burns C, Lee S, Meng X, LoCastro L, Jarantow LW, Martin J, Lee SH, Taylor I, Robbins D, Malone C, Wang L, Zamudio CS, Youngman PJ, Phillips JW (2009) A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem Biol 16:826–836

    Google Scholar 

  • Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL, Zugay JA, Emini EA, Schleif WA, Quintero JC et al (1994) L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J Med Chem 37:3443–3451

    Article  PubMed  CAS  Google Scholar 

  • Fabbretti A, Gualerzi CO, Brandi L (2011) How to cope with the quest for new antibiotics. FEBS Lett 585(11):1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Brötz-Oesterhelt H (2005) Functional genomics in antibacterial drug discovery. Drug Discov Today 10:927–935

    Google Scholar 

  • Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW (2002). A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43:1387–1400

    Google Scholar 

  • Gadebush HH, Stapley EO, Zimmerman SB (1992) The discovery of cell wall active antibacterial antibiotics. Crit Rev Biotechnol 12:225–243

    Article  Google Scholar 

  • Genilloud O (2012) Current challenges in the discovery of novel antibacterials from microbial natural products. Recent Pat Antiinfect Drug Discov 7:189–204

    Article  PubMed  CAS  Google Scholar 

  • Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389

    Article  PubMed  CAS  Google Scholar 

  • Goetz MA, Zhang C, Zink DL, Arocho M, Vicente F, Bills GF, Polishook J, Dorso K, Onishi R, Gill C, Hickey E, Lee S, Ball R, Skwish S, Donald RG, Phillips JW, Singh SB (2010) Coelomycin, a highly substituted 2,6-dioxo-pyrazine fungal metabolite antibacterial agent discovered by Staphylococcus aureus fitness test profiling. J Antibiot 63:512–518

    Article  PubMed  CAS  Google Scholar 

  • Grompe M, Versalovic J, Koeuth T, Lupski JR (1991) Mutations in the Escherichia coli dnaG gene suggest coupling between DNA replication and chromosome partitioning. J Bacteriol 173:1268–1278

    PubMed  CAS  Google Scholar 

  • Grundling A, Schneewind O (2007) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8478–8483

    Article  PubMed  CAS  Google Scholar 

  • Guilloteau JP, Mathieu M, Giglione C, Blanc V, Dupuy A, Chevrier M, Gil P, Famechon A, Meinnel T, Mikol V (2002) The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 320:951–962

    Article  PubMed  CAS  Google Scholar 

  • Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ (2010) Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 1213:5–19

    Article  PubMed  Google Scholar 

  • Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  PubMed  CAS  Google Scholar 

  • Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Mordoh J, Jacob F (1970) On the process of cellular division in Escherichia coli. 3. Thermosensitive mutants of Escherichia coli altered in the process of DNA initiation. J Mol Biol 53:369–387

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, McHugh GL, Winters MB, Swartz MN (1982) Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob Agents Chemother 22:662–671

    Article  PubMed  CAS  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I (2005) Prospects for Aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother 49:4821–4833

    Article  PubMed  CAS  Google Scholar 

  • Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search (2013). J Comput Aided Mol Des 21:281–306

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Chen D, White RJ, Patel DV, Yuan Z (2005) Bacterial peptide deformylase inhibitors: a new class of antibacterial agents. Curr Med Chem 12:1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Jayasuriya H, Herath KB, Zhang C, Zink DL, Basilio A, Genilloud O, Díez MT, Vicente F, González I, Salazar O, Peláez F, Cummings R, Ha S, Wang J, Singh SB (2007) Isolation and structure of platencin: a FabH and FabF dual inhibitor with potent broad-spectrum antibiotic activity. Angew Chem Int Ed Engl 46:4684–4688

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Panda D (2009) Targeting FtsZ for antibacterial therapy: a promising avenue. Expert Opin Ther Targets 13:1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Keyser P, Elofsson M, Rosell S, Wolf-Watz H (2008) Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J Intern Med 264:17–29

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA (2012) Recent derivatives from smaller classes of fermentation-derived antibacterials. Expert Opin Ther Patents 22:15–35

    Article  CAS  Google Scholar 

  • Kirst HA (2013) Developing new antibacterials through natural product research. Expert Opin Drug Discov 8:479–493

    Article  PubMed  CAS  Google Scholar 

  • Konrad EB (1977) Method for the isolation of duplications between chromosomal enhanced recombination Escherichia coli mutants with. J Bacteriol 130:167–172

    PubMed  CAS  Google Scholar 

  • Langsdorf EF, Malikzay A, Lamarr WA, Daubaras D, Kravec C, Zhang R, Hart R, Monsma F, Black T, Ozbal CC, Miesel L, Lunn CA (2010) Screening for antibacterial inhibitors of the UDP-3-O-(R-3-Hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay. J Biomol Screen 15:52–61

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J (1956) Bacterial protoplasts Induced by penicillin. Proc Natl Acad Sci U S A. 42:574–577

    Article  PubMed  CAS  Google Scholar 

  • Ligozzi M, Pittaluga F, Fontana R (1993) Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J Bacteriol 175:2046–2051

    PubMed  CAS  Google Scholar 

  • Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès JM (2007) Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Mani N, Sancheti P, Jiang ZD, McNaney C, DeCenzo M, Knight B, Stankis M, Kuranda M, Rothstein DM (1998) Screening systems for detecting inhibitors of cell wall transglycosylation in Enterococcus. Cell wall transglycosylation inhibitors in Enterococcus. J Antibiot 51:471–479

    Article  PubMed  CAS  Google Scholar 

  • Mansour TS, Caufield CE, Rasmussen B, Chopra R, Krishnamurthy K, Morris M, Svenson K, Bard J, Smeltzer C, Naughton S, Antane S, Yang Y, Severin A, Quagliato D, Petersen PJ, Singh G (2007) Naphthyl tetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. Chem Med Chem 2:1414–1417

    PubMed  CAS  Google Scholar 

  • Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Pochet S, Marliere P (1994) Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 13:914–923

    PubMed  CAS  Google Scholar 

  • McClerren A, Endsley S, Bowman J, Andersen N, Guan Z, Rudolph J, Raetz C (2005) A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry 44:16574–16583

    Article  PubMed  CAS  Google Scholar 

  • Meinnel T, Blanquet S (1993) Evidence that peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichia coli. J Bacteriol 175:7737–7740

    PubMed  CAS  Google Scholar 

  • Monneret C (2013) Four new drugs on the market: abiraterone, belatacept, vandetanib and fidaxomicin. Ann Pharm 71:95–103

    Article  CAS  Google Scholar 

  • Mori H, Ito K (2001) The Sec protein-translocation pathway. Trends Microbiol 9:494–500

    Article  PubMed  CAS  Google Scholar 

  • Mullane KM, Gorbach S (2011) Fidaxomicin: first-in-class macrocyclic antibiotic. Expert Rev Anti Infect Ther 9:767–777

    Article  PubMed  CAS  Google Scholar 

  • Murakami R, Muramatsu Y, Minami E et al (2009) A novel assay of bacterial peptidoglycan synthesis for natural product screening. J Antibiot 62:153–158

    Article  PubMed  CAS  Google Scholar 

  • Novak R (2012) Retapamulin: a first-in-class pleuromutilin antibiotic. In: Genilloud O, Vicente F (eds) Drug discovery from natural products. RSC Publishing, London

    Google Scholar 

  • Oldfield E (2010) Targeting isoprenoid biosynthesis for drug discovery: bench to bedside. Acc Chem Res 43:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Oluyinka MG, McKenziea AR, Shapiroa AB, Otterbeinb L, Nic H, Pattena A, Stokesa S, Alberta R, Kawatkara S, Breedd J (2012) Inhibitors of acetyltransferase domain of N-acetylglucosamine-1- phosphate-uridyltransferase/glucosamine-1-phosphateacetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series. Bioorg Med Chem Lett 22:1510–1519

    Article  CAS  Google Scholar 

  • Ondeyka JG, Zink DL, Young K, Painter R, Kodali S, Galgoci A, Collado J, Tormo JR, Basilio A, Vicente F, Wang J, Singh SB (2006) Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J Nat Prod 69:377–380

    Article  PubMed  CAS  Google Scholar 

  • Ondeyka JG, Zink D, Basilio A, Vicente F, Bills G, Diez MT, Motyl M, Dezeny G, Byrne K, Singh SB (2007) Coniothyrione, a chlorocyclopentandienyl benzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J Nat Prod 70:668–670

    Article  PubMed  CAS  Google Scholar 

  • Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, Chen MH, Patchett AA, Galloway SM, Hyland SA, Anderson MS, Raetz CRH (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274:980–982

    Article  PubMed  CAS  Google Scholar 

  • Overbye KM, Barrett JF (2005) Antibiotics: where did we go wrong? Drug Discov Today. 10:45–52

    Article  PubMed  Google Scholar 

  • Parish CA, de la Cruz M, Smith SK, Zink D, Baxter J, Tucker-Samaras S, Collado J, Platas G, Bills G, Díez MT, Vicente F, Peláez F, Wilson K (2009) Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J Nat Prod 72:59–62

    Article  PubMed  CAS  Google Scholar 

  • Payne DJ, Miller WH, Berry V, Brosky J, Burgess WJ, Chen E, DeWolf WE Jr, Fosberry AP Jr, Greenwood R, Head MS, Heerding DA, Janson CA, Jaworski DD, Keller PM, Manley PJ, Moore TD, Newlander KA, Pearson S, Polizzi BJ, Qiu X, Rittenhouse SF, Slater-Radosti C, Salyers KL, Seefeld MA, Smyth MG, Takata DT, Uzinskas IN, Vaidya K, Wallis NG, Winram SB, Yuan CC, Huffman WF (2002) Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob Agents Chemother 46:3118–3124

    Article  PubMed  CAS  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  PubMed  CAS  Google Scholar 

  • Pereira MP, Blanchard JE, Murphy C, Roderick SL, Brown ED (2009) High-throughput screening identifies novel inhibitors of the acetyltransferase activity of Escherichia coli GlmU. Antimicrob Agents Chemother 53:2306–2311

    Article  PubMed  CAS  Google Scholar 

  • Peterson EJR, Janzen WP, Kireev D, Singleton SF (2012) High-throughput screening for RecA inhibitors using a Transcreener Adenosine 5-O-diphosphate assay. Assay Drug Dev Technol 10:260–268

    Article  PubMed  CAS  Google Scholar 

  • Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, Lee S, Skwish S, de la Cruz M, Martín J, Vicente F, Genilloud O, Lu J, Painter RE, Young K, Overbye K, Donald RG, Singh SB (2011) Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 18:955–965

    Article  PubMed  CAS  Google Scholar 

  • Schaus N, O’Day K, Peters W, Wright A (1981) Isolation and characterization of amber mutations in gene dnaA of Escherichia coli K-12. J Bacteriol 145:904–913

    PubMed  CAS  Google Scholar 

  • Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infective. FASEB J 12:1599–1609

    PubMed  CAS  Google Scholar 

  • Schmid MB (2006) Crystallizing new approaches for antimicrobial drug discovery. Biochem Pharmacol 71:1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Silver LL (2006) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 71:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109

    Article  PubMed  CAS  Google Scholar 

  • Silver LL (2012) Rational approaches to antibacterial discovery: pre-genomic directed and phenotypic screening. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development. Springer Science, New York

    Google Scholar 

  • Silver L, Bostian K (1990) Screening of natural products for antimicrobial agents. Eur J Clin Microbiol Infect Dis 9:455–461

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Zink DL, Huber J, Genilloud O, Salazar O, Diez MT, Basilio A, Vicente F, Byrne KM (2006) Discovery of lucensimycins A and B from Streptomyces lucensis MA7349 using an antisense strategy. Organic Lett 8:5449–5452

    Article  CAS  Google Scholar 

  • Singh SB, Phillips JW, Wang J (2007) Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr Opin Drug Discov Devel 10:160–166

    PubMed  CAS  Google Scholar 

  • Singh SB, Young K, Miesel L (2011) Screening strategies for discovery of antibacterial natural products. Expert Rev Anti Infect Ther 9:589–613

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J, Ebright YW, Zozula A, Shen J, Sengupta S, Niedfeldt RR, Xin C, Kaneko T, Irschik H, Jansen R, Donadio S, Connell N, Ebright RH (2011) New target for inhibition of bacterial RNA polymerase: ‘switch region’. Curr Opin Microbiol 14:532–543

    Article  PubMed  CAS  Google Scholar 

  • Sugie Y, Inagaki S, Kato Y, Nishida H, Pang CH, Saito T, Sakemi S, Dib-Hajj F, Mueller JP, Sutcliffe J, Kojima Y (2002) CJ-21,058, a new SecA inhibitor isolated from a fungus. J Antibiot 55:25–29

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Cohen S, Mani N, Murphy C, Rothstein DM (2002) A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiotics 55:279–287

    Article  CAS  Google Scholar 

  • Tholander F, Sjöberg BM (2012) Discovery of antimicrobial ribonucleotide reductase inhibitors by screening in microwell format. Proc Natl Acad Sci U S A 109:9798–9803

    Article  PubMed  CAS  Google Scholar 

  • Tomasić T, Masic LP (2009) Rhodanine as a privileged scaffold in drug discovery. Curr Med Chem 16:1596–1629

    Article  PubMed  Google Scholar 

  • Trusca D, Bramhill D (2002) Fluorescent assay for polymerization of purified bacterial FtsZ cell-division protein. Anal Biochem 307:322–329

    Article  PubMed  CAS  Google Scholar 

  • Urban A, Eckermann S, Fast B, Metzger S, Gehling M, Ziegelbauer K, Rübsamen-Waigmann H, Freiberg C (2007) Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol 73:6436–6443

    Article  PubMed  CAS  Google Scholar 

  • Venugopal AA, Johnson S (2012) Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis 54:568–574

    Article  PubMed  CAS  Google Scholar 

  • Villoutreix BO, Renault N, Lagorce D, Sperandio O, Montes M, Miteva MA (2007) Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 8:381–411

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, Vicente F, González A, Cully D, Bramhill D, Singh S (2003) Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278:44424–44428

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang CW, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vicente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL, Hermes JD, Bartizal K, Barrett J, Schmatz D, Becker JW, Cully D, Singh SB (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Kodali S, Lee SH, Galgoci A, Painter R, Dorso K, Racine F, Motyl M, Hernandez L, Tinney E, Colletti SL, Herath K, Cummings R, Salazar O, González I, Basilio A, Vicente F, Genilloud O, Peláez F, Jayasuriya H, Young K, Cully DF, Singh SB (2007) Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104:7612–7616

    Article  PubMed  CAS  Google Scholar 

  • Weidenmaier C, Peschel A, Xiong Y, Kristian S, Dietz K, Yeaman M, Bayer A (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Weisblum B, Haenssler E (1974) Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma 46:255–260

    Article  PubMed  CAS  Google Scholar 

  • Wigle TJ, Sexton JZ, Gromova AV, Hadimani MB, MA, GR, Yeh L-A, Singleton SF (2009) Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. J Biomol Screen 14:1092–1101

    Google Scholar 

  • Wilson KE, Tsou NN, Guan Z, Ruby CL, Pelaez F, Gorrochategui J, Vicente F, Onishi HR (2000) Isolation and structure elucidation of coleophomones A and B, novel inhibitors of bacterial cell wall transglycosylase. Tetrahedron Lett 41:8705–8709

    Google Scholar 

  • Wimberly BT (2009) The use of ribosomal crystal structures in antibiotic drug design Curr Opin Investig Drugs 10:750–65

    Google Scholar 

  • Wong KK, Pompliano DL (1998) Peptidoglycan biosynthesis. Unexploited antibacterial targets within a familiar pathway. Adv Exp Med Biol 456:197–217

    Article  PubMed  CAS  Google Scholar 

  • Wright GD, Sutherland AD (2007) New strategies for combating multidrug-resistant bacteria. Trends Mol Med 13:260–267

    Article  PubMed  CAS  Google Scholar 

  • Yang LP, Keam SJ (2008) Retapamulin: a review of its use in the management of impetigo and other uncomplicated superficial skin infections. Drugs 68:855–873

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Chen WW, Skolnick J, Shakhnovich EI (2007) All-atom ab initio folding of a diverse set of proteins. Structure 15:53–63

    Article  PubMed  CAS  Google Scholar 

  • Young K, Jayasuriya H, Ondeyka JG, Herath K, Zhang CW, Kodali S, Galgoci A, Painter R, Brown-Driver V, Yamamoto R, Silver LL, Zheng YC, Ventura JI, Sigmund J, Ha S, Basilio A, Vicente F, Tormo JR, Pelaez F, Youngman P, Cully D, Barrett JF, Schmatz D, Singh SB, Wang J (2006) Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 50:519–526

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Trias J, White RJ (2001) Deformylase as a novel antibacterial target. Drug Discov Today 6:954–961

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Occi J, Masurekar P, Barrett JF, Zink DL, Smith S, Onishi R, Ha S, Salazar O, Genilloud O, Basilio A, Vicente F, Gill C, Hickey EJ, Dorso K, Motyl M, Singh SB (2008) Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J Am Chem Soc 130:12102–12110

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Sanner MF (2007) FLIPDock: docking flexible ligands into flexible receptors. Proteins 68:726–737

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Zhang Y, Sinko W, Hensler ME, Olson J, Molohon KJ, Lindert S, Cao R, Li K, Wang K, Wang Y, Liu YL, Sankovsky A, de Oliveira CA, F, Mitchell DA, Nizete V, McCammon JA, Oldfielda E (2013) Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci U S A 110:123–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Genilloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genilloud, O., Vicente, F. (2014). Strategies to Discover Novel Antimicrobials to Cope with Emerging Medical Needs. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_17

Download citation

Publish with us

Policies and ethics