Skip to main content

Modeling of Airborne Wind Energy Systems in Natural Coordinates

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This paper presents a modeling approach for AWE systems that allows for developing models of low symbolic complexity and low nonlinearity. The approach is based on multi-body modeling, using natural coordinates and algebraic constraints as a representation of the system evolution. This paper shows how to build such models for AWE systems in the Lagrangian framework and how to efficiently incorporate a non-singular representation of the pose (i.e. 3D orientation) of the wing. The proposed modeling technique is illustrated on a single-wing AWE system for power generation and rotating start-up, and for a dual-wing AWE system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, J., Åkesson, J., Diehl, M.: CasADi – A symbolic package for automatic differentiation and optimal control. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation, Vol. 87, Lecture Notes in Computational Science and Engineering, pp. 297–307. Springer, Berlin (2012). doi: 10.1007/978-3-642-30023-327

    Google Scholar 

  • Ascher, U. M., Petzold, L. R.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. SIAM Press, Philadelphia (1998)

    Google Scholar 

  • Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010). doi: 10.1109/TCST.2009.2017933

  • Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011). doi: 10.1002/rnc.1808

    Google Scholar 

  • Fagiano, L., Milanese, M., Piga, D.: High-altitude wind power generation. IEEE Transactions on Energy Conversion 25(1), 168–180 (2010). doi: 10.1109/TEC.2009.2032582

    Google Scholar 

  • Groot, S. G. C. de, Breukels, J., Schmehl, R., Ockels, W. J.: Modeling Kite Flight Dynamics Using a Multibody Reduction Approach. AIAA Journal of Guidance, Control and Dynamics 34(6), 1671–1682 (2011). doi: 10.2514/1.52686

    Google Scholar 

  • Gros, S., Zanon, M., Diehl, M.: Control of AirborneWind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  • Gros, S., Zanon, M., Vukov, M., Diehl, M.: Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 86–93, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi: 10.3182/20120823-5-NL-3013.00061

  • Gros, S., Ahmad, H., Geebelen, K., Swevers, J., Diehl, M.: In-flight Estimation of the Aerodynamic Roll Damping and Trim Angle for a Tethered Aircraft based on Multiple-shooting. In: Proceedings of the 16th IFAC Symposium on System Identification, pp. 1407–1412, Brussels,Belgium, 11–13 July 2012. doi: 10.3182/20120711-3-BE-2027.00342

  • Houska, B.: Robustness and Stability Optimization of Open-Loop Controlled Power Generating Kites. M.Sc.Thesis, Ruprecht-Karls-Universit¨at, Heidelberg, 2007. http://www.kuleuven.be/optec/files/Houska2007a.pdf

  • Joshi, A. W.: Elements of Group Theory for Physicists. 4th ed. New Age International Publishers,New Delhi (1997)

    Google Scholar 

  • Pantelides, C. C., Sargent, R. W. H., Vassiliadis, V. S.: Optimal control of multistage systems described by high-index differential-algebraic equations. In: Bulirsch, R., Kraft, D. (eds.) Computational Optimal Control, ISNM International Series of Numerical Mathematics Vol. 115, pp. 177–191. Birkh¨auser, Basel (1994). doi:

    Google Scholar 

  • Papastavridis, J. G.: Analytical Mechanics. Oxford University Press, New York (2002)

    Google Scholar 

  • Schulz, V. H., Bock, H. G., Steinbach, M. C.: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAEs. SIAM Journal on Scientific Computing 19(2), 440–467 (1998). doi: 10.1137/S1064827594261917

    Google Scholar 

  • Shabana, A. A.: Dynamics of Multibody Systems. 3rd ed. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Terink, E. J., Breukels, J., Schmehl, R., Ockels, W. J.: Flight Dynamics and Stability of a Tethered Inflatable Kiteplane. AIAA Journal of Aircraft 48(2), 503–513 (2011). doi: 10.2514/1.C031108

    Google Scholar 

  • Williams, P., Lansdorp, B., Ockels,W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether. AIAA Paper 2007-6705. In: Proceedings of the AIAA Modelling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007. doi: 10.2514/6.2007-6705

  • Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008). doi: 10.2514/1.31604

  • Williams, P., Lansdorp, B., Ruiterkamp, R., Ockels, W.: Modeling, Simulation, and Testing of Surf Kites for Power Generation. AIAA Paper 2008-6693. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Honolulu, HI, USA, 18–21 Aug 2008. doi: 10.2514/6.2008-6693

  • Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013). doi: 10.1109/TCST.2013.2257781

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gros, S., Diehl, M. (2013). Modeling of Airborne Wind Energy Systems in Natural Coordinates. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics