Skip to main content

Airborne Wind Energy: Basic Concepts and Physical Foundations

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Tethered wings that fly fast in a crosswind direction have the ability to highly concentrate the abundant wind power resource in medium and high altitudes, and promise to make this resource available to human needs with low material investment. This chapter introduces the main ideas behind airborne wind energy, attempts a classification of the basic concepts that are currently pursued, and discusses its physical foundations and fundamental limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, C. L., Caldeira, K.: Global Assessment of High-Altitude Wind Power. Energies 2(2), 307–319 (2009). doi: 10.3390/en20200307

    Google Scholar 

  2. Breuer, J. C. M., Luchsinger, R. H.: Inflatable kites using the concept of Tensairity. Aerospace Science and Technology 14(8), 557–563 (2010). doi: 10.1016/j.ast.2010.04.009

  3. Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation - fast predictive control of tethered airfoils. IEEE Control Systems Magazine 27(6), 25–38 (2007). doi: 10. 1109/MCS.2007.909465

    Google Scholar 

  4. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007. http://www.kuleuven.be/optec/files/Houska2007.pdf

  5. Ilzh¨ofer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). doi: 10.1002/rnc.1210

  6. Lansdorp, B., Ockels, W. J.: Comparison of concepts for high-altitude wind energy generation with ground based generator. Paper presented at the 2nd China International Renewable Energy Equipment and Technology Exhibition and Conference, Beijing, China, 25–27 May 2005. http://repository.tudelft.nl/view/ir/uuid:fddb7820-1e79-4744-ad38-f92b9251d02b/

  7. Lansdorp, B., Ruiterkamp, R., Ockels, W. J.: Towards Flight Testing of Remotely Controlled Surfkites for Wind Energy Generation. AIAA Paper 2007-6643. In: Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007. doi: 10.2514/6.2007-6643

  8. Lansdorp, B., Williams, P.: The Laddermill - Innovative Wind Energy from High Altitudes in Holland and Australia. In: Proceedings of Global Windpower 06, Adelaide, Australia, 18– 21 Sept 2006. http://resolver.tudelft.nl/uuid:9ebe67f0-5b2a-4b99-8a3d-dbe758e53022

  9. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021

    Google Scholar 

  10. MacKay, D.: Sustainable Energy - Without the Hot Air. UIT Cambridge, Cambridge (2009). http://www.dspace.cam.ac.uk/handle/1810/217849

  11. Makani Power. http://www.makanipower.com/wp-content/uploads/press-images/. Accessed 28 July 2013

  12. Payne, P. R., McCutchen, C.: Self-Erecting Windmill. US Patent US 3,987,987, 26 Oct 1976

    Google Scholar 

  13. Pocock, G.: The Aeropleustic Art, or, Navigation in the Air by the use of Kites, or Buoyant Sails. Sherwood & Co, London (1827). http://collections.britishart.yale.edu/vufind/Record/2033761

  14. Roberts, B. W., Shepard, D. H., Caldeira, K., Cannon, M. E., Eccles, D. G., Grenier, A. J., Freidin, J. F.: Harnessing High-Altitude Wind Power. IEEE Transaction on Energy Conversion 22(1), 136–144 (2007). doi: 10.1109/TEC.2006.889603

  15. Wellicome, J. F.: Some comments on the relative merits of various wind propulsion devices. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 111–142 (1985). doi: 10.1016/0167-6105(85)90015-7

    Google Scholar 

  16. Williams, P., Lansdorp, B., Ockels,W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether. AIAA Paper 2007-6705. In: Proceedings of the AIAA Modelling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007. doi: 10.2514/6.2007-6705

  17. Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013). doi: 10.1109/TCST.2013.2257781

    Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous reviewers for their helpful comments, and Reinhart Paelinck, the Delft University of Technology, Roland Schmehl, PJ Shepard, and Makani Power for some of the illustrations in this chapter. This research was supported by Research Council KUL: PFV/10/002 Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and GOA/10/11 Global real- time optimal control of autonomous robots and mechatronic systems. Flemish Government: IOF/KP/SCORES4CHEM, FWO: PhD/postdoc grants and projects: G.0320.08 (convex MPC), G.0377.09 (Mechatronics MPC); IWT: PhD Grants, projects: SBO LeCoPro; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and optimization, 2012-2017); EU: FP7- EMBOCON (ICT-248940), FP7-SADCO (MC ITN- 264735), ERC ST HIGHWIND (259 166), Eurostars SMART, ACCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Diehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diehl, M. (2013). Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics