Skip to main content

3-D Cellular Automata Model of Fluid Permeation through Porous Material

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7979))

Abstract

A 3D Cellular Automata (CA) model for simulating fluid permeation through porous material with complex morphology is developed and investigated. The model is a composition of two interacting CA: one, simulating fluid convection, induced either by gravitation force or by external pressure, and another — simulating fluid surface leveling by diffusion. Both CA process the same discrete space, their operation being separated in time and space, which simplifies essentially parallel implementation. The CA model is tested on an example of water permeation through soil. Results of its parallel implementation on a multiprocessor with distributed memory are presented. A tomographic digitized representation of a 3D soil sample was kindly given by Prof.Wim Cornelis. The simulation program was implemented on the cluster of Siberian Supercomputer Center of Siberian Branch of Russian Academy of Science.

Supported by (1)Presidium of Russian Academy of Sciences, Basic Research Program 15-9 (2013), (2) Siberian Branch of Russian Academy of Sciences, Interdisciplinary Project 47, (3) Russian Fund for Basic Research grant 11-01-00567a.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandman, O.: Using cellular automata for porous media simulation. J. of Supercomputing 57(2), 121–131 (2011)

    Article  Google Scholar 

  2. Keller, L.M., et al.: 3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport. Appl. Clay Science 52, 85–95 (2011)

    Article  Google Scholar 

  3. Rothman, B.H., Zaleski, S.: Lattice-Gas Cellular Automata. Simple Models of Complex Hydrodynamics. Cambridge Univ. Press (1997)

    Google Scholar 

  4. Hidemitsu, H.: Lattice Boltzmann Method and its Application to Flow Analysis in Porous Media. R&D Review of Toyota CRDL 38(1), 17–25 (2007)

    Google Scholar 

  5. Hoekstra, A.G., et al. (eds.): Simulating Complex Systems by Cellular Automata. Understanding complex Systems. Springer, Berlin (2010)

    Google Scholar 

  6. Bandman, O.L.: Cellular-Automata models of Spatial Dynamics Simulation. System Informatics (10), 58–116 (2006) (in Russian)

    Google Scholar 

  7. Frish, U., Hasslacher, B., Pomeau, Y.: Lattice-gas Automata for Navier-Stokes equation. Phys. Rev. Letters 56, 1505–1508 (1986)

    Article  Google Scholar 

  8. Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulation annealing. Review in Modern Physics 65(4), 1393–1534 (1993)

    Article  Google Scholar 

  9. Jansen, A.P.J.: An Introduction to Monte-Carlo Simulation of Surface Reactions, arXiv:cond-mat/0303028v1[stat-mech] (2003)

    Google Scholar 

  10. Bandman, O.: Parallel Simulation of Asynchronous Cellular Automata Evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Achasova, S., Bandman, O.: Correctness of parallel Processes. Nauka, Novosibirsk (1999) (in Russian)

    Google Scholar 

  12. Kalgin, K.: Parallel implementation of asynchronous cellular automama on 32-core computer. Siberian J. Num. Math. 15(1), 55–65 (2012)

    Google Scholar 

  13. Gardner, M.: Mathematical Games - the fantastic combinations of John Conway’s new solitaire game ”life”. Scientific American 223, 120–123 (1970)

    Article  Google Scholar 

  14. Bandman, O.: Cellular Automata Composition Techniques for Spatial Dynamics Simulation. In: Hoekstra, A.G., et al. (eds.) Simulating Complex Systems by Cellular Automata. Understanding complex Systems, pp. 81–115. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Toffolli, T., Margolus, N.: Cellular Automata Machines: A new Environment for Modeling. MIT Press, USA (1987)

    Google Scholar 

  16. Ramirez, A., Jaramillo, D.E.: Porous media generated by using an immiscible Lattice-Gas model. Computational Material Science 65, 157–164 (2012)

    Article  Google Scholar 

  17. Basndman, O.: Invariants of cellular automata reactioon-diffusion models. Applied Discrete Mathematics (3), 55–64 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandman, O. (2013). 3-D Cellular Automata Model of Fluid Permeation through Porous Material. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2013. Lecture Notes in Computer Science, vol 7979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39958-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39958-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39957-2

  • Online ISBN: 978-3-642-39958-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics