Skip to main content

Practical Receiver Systems

  • Chapter
  • First Online:
Tools of Radio Astronomy

Abstract

Incoherent radiometers do not preserve phase; these operate as direct detection systems. The most common type of incoherent radiometers is the bolometer, used at millimeter wavelengths. Bolometers are basically very sensitive thermometers, so have no frequency or polarization specific response, wide bandwidths and are sensitive to both polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken, D.K. et al. (2000): Ap. J. 534, L173.

    Google Scholar 

  • Baker, A.J., Glenn, J., Harris, A.I., Mangum, J.G., Yun, M.S. eds. (2007): From Z Machines to ALMA: (Sub)millimeter Spectroscopy of Galaxies Conf. Ser. 375 (Astron. Soc of Pacific, San Francisco)

    Google Scholar 

  • Barkats, D. et al. (2005): Ap. J. Suppl. 159, 1

    Google Scholar 

  • Born, M., Wolf, E. (2002): Principles of Optics 7th ed. (Cambridge Univ. Press, Cambridge)

    Google Scholar 

  • Carlson, B, Dewdney, P. (2000): Electron. Lett. 36, 987

    Google Scholar 

  • Darlington, S. (1964): Bell Syst. Tech. J. 43, 339

    Google Scholar 

  • de Graauw, T. et al. (2010): A. & A. 518, L6

    Google Scholar 

  • Erickson, N.R., Grosslein, R.M., Erickson, R.B., Weinreb, S. (1999): IEEE Trans. Microwave Theory Tech. 47(12), 2212

    Google Scholar 

  • Escoffier, R.P. et al. (2007): A. & A. 462, 801

    Google Scholar 

  • Gershenzon, E.M., Gol’tsman, G.N., Gogidgze, I.G., Gusev, Y.P., Elant’ev, A.I., Karasik, B.S., Semenov, A.D. (1990): Soviet Phys. Superconductivity 3 (10), 1582

    Google Scholar 

  • Griffin, M.J., Holland, W.S. (1988): Int. J. Infrared & Millimeter Waves 9, 861

    Google Scholar 

  • Griffin, M.J. et al. (2010): A. & A. 518, L3

    Google Scholar 

  • Harris, A.I. et al. 2008 in “From Z-Machines to ALMA: (sub)millimeter Spectroscopy of Galaxies ASP Conf Series 375, 82

    Google Scholar 

  • Hartogh, P., Osterschek, K. (1998): SPIE, 2583, 282

    Article  Google Scholar 

  • Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., Collins, R.A. (1968): Nature 217, 709

    Google Scholar 

  • Hinderks, J.R. et al. (2011): “Polarization calibration of the QUaD experiment” in Astronomical Polarimetry 2008: Science from Small to Large Telescopes Bastien, P., Manset, N. Clemens, D.P., St-Louis, N. eds. ASP Conf. Ser. 449, (Astron. Soc of Pacific, San Francisco) 63

    Google Scholar 

  • Iguchi, S. et al. (2009): PASJ 61, 1

    Google Scholar 

  • Jones, R.C. (1953): J. Opt. Soc. America 43, 1

    Google Scholar 

  • Krejny, M. et al. (2008): Appl. Optics, 47, 4429

    Google Scholar 

  • Lorimer, D.R. (2008) “Binary and Millisecond Pulsars” in Living Rev. Relativity 11, 8

    Google Scholar 

  • Low, F.J., Rieke, G.H., Gehrz, R. (2007): Ann. Rev. A. & A. 45, 43

    Google Scholar 

  • Mather, J.C. (1982): Appl. Optics 21, 1125

    Google Scholar 

  • Mather, J.C. et al. (1990): Ap.J., 354, L37

    Google Scholar 

  • Mazin, B.A. (2004): “Microwave Kinetic Inductance Detectors” unpublished Ph.D. thesis, Caltech, (Pasadena, CA)

    Google Scholar 

  • NRC-EVLA Memo 14 (WIDAR)

    Google Scholar 

  • O’Brient, R. et al. (2012) Proc. of SPIE, 8452, 1 (doi:10.1117/12.927214)

    Google Scholar 

  • Poglitsch, A. et al. (2010): A. & A. 518, L2

    Google Scholar 

  • Rieke, G.H. (2002): Detection of Light; From the Ultraviolet to the Submillimeter, 2nd ed. (Cambridge University Press, Cambridge )

    Google Scholar 

  • Staguhn, J.G. et al. (2012) Proc. SPIE, 8452 (doi: 10.1117/12.927037)

    Google Scholar 

  • Stacey, G. et al. (2002): “Direct Detection Spectroscopy in the 350 μm Window: SPIFI on the JCMT” in Proc. of Infrared & Submillimeter Space Astronomy, (Giard, M. et al. eds.) EAS Pub. Ser. 4, 419

    Google Scholar 

  • van Engelen, A. et al. (2012): Ap. J. 756, 142

    Google Scholar 

  • Weinreb, S. (1961): Proc. I.R.E. 49, 1099

    Google Scholar 

  • Weinreb, S. (1963): A Digital Spectral Analysis Technique and its Application to Radio Astronomy MIT Tech. Rep. 412 (MIT, Cambridge, MA)

    Google Scholar 

  • Woody, D.P. (2009): “Early days of SIS receivers” in Submillimeter Astrophysics and Technology Lis, D.C, Vaillancourt, J.E., Goldsmith, P.F., Bell, T.A., Scoville, N.Z., Zmuidzinas, J. eds ASP Conf. Ser. 417, (Astron. Soc of Pacific, San Francisco), 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilson, T.L., Rohlfs, K., Hüttemeister, S. (2013). Practical Receiver Systems. In: Tools of Radio Astronomy. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39950-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39950-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39949-7

  • Online ISBN: 978-3-642-39950-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics