Skip to main content

State Transfer Hamiltonians in Photonic Lattices

  • Chapter
  • First Online:

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Faithful communication is a necessary precondition for large scale all-optical networking and quantum information processing. Related theoretical investigations in different areas of physics have led to various proposals in which finite discrete lattices are used as channels for short-distance communication tasks. Here, in the framework of femtosecond-laser-written waveguide arrays, we present the first experimental realization of such a channel with judiciously engineered couplings. Various sources of imperfections and defects are identified, which are associated with the engineering procedure and affect the communication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    At present we ignore losses and consider a charge and current free configuration.

  2. 2.

    As will be discussed later on, in the case of strong fields, the dependence of the refractive index (and of the permittivity) on the field strengths has to be taken into account.

  3. 3.

    In general, however, one may modify the refractive index in all three directions (see e.g. [2, 37]).

  4. 4.

    Throughout this chapter we consider monochromatic excitation of photonic lattices.

  5. 5.

    Variations of the mode amplitudes with z are sufficiently small to allow for the omission of second-order derivatives with respect to z.

  6. 6.

    Formally speaking, for the jth waveguide this means that the typical sizes of \(\mathbf{}E_{j}(x,y)\) and \(\varDelta n_{j}^{2}(x,y)\), are much smaller than the separation of the jth waveguide from its neighbours.

  7. 7.

    The engineering of a lattice with N = 9 waveguides took us 8–9 h and the stability of the laser source was not guaranteed during this period.

  8. 8.

    Standard amplifiers delivering few 100 kHz are usually employed and high-energy oscillators with a repetition rate up to few MHz become now available.

  9. 9.

    Translation stages for laser micromachining applications with accuracy less than 0.1 μm are also available.

  10. 10.

    Although throughout this theoretical model we consider monochromatic excitation of the lattice, in the case of broadband very short pulses temporal effects should be considered as well.

References

  1. D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature 424, 817 (2003)

    Article  ADS  Google Scholar 

  2. A. Szameit, S. Nolte, J. Phys. B 43, 163001 (2010)

    Article  ADS  Google Scholar 

  3. S. Longhi, Laser Photonics Rev. 3, 243 (2009)

    Article  Google Scholar 

  4. H. Trompeter, W. Krolikowski, D. Neshev, A. Desyatnikov, A. Sukhorukov, Y. Kivshar, T. Pertsch, U. Peschel, F. Lederer, Phys. Rev. Lett. 96, 053903 (2006)

    Article  ADS  Google Scholar 

  5. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    Article  ADS  Google Scholar 

  6. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 13906 (2008)

    Article  ADS  Google Scholar 

  7. L. Martin, G. Di Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A.F. Abouraddy, D.N. Christodoulides, B.E.A. Saleh, Opt. Express 19, 13636 (2011)

    Article  ADS  Google Scholar 

  8. A. Perez-Leija, H. Moya-Cessa, A. Szameit, D.N. Christodoulides, Opt. Express 35, 2409 (2010)

    Google Scholar 

  9. R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, A. Szameit, Phys. Rev. Lett. 107, 103601 (2011)

    Article  ADS  Google Scholar 

  10. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Phys. Rep. 463, 1 (2008)

    Article  ADS  Google Scholar 

  11. M. Bellec, P. Panagiotopoulos, D.G. Papazoglou, N.K. Efremidis, A. Couairon, S. Tzortzakis, Phys. Rev. Lett. 109, 113905 (2012)

    Article  ADS  Google Scholar 

  12. U. Peschel, R. Morandotti, J.M. Arnold, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, T. Pertsch, F. Lederer, J. Opt. Soc. Am. B 19, 2637 (2002)

    Article  ADS  Google Scholar 

  13. U. Röpke, H. Bartelt, S. Unger, K. Schuster, J. Kobelke, Opt. Express 15, 6894 (2007)

    Article  ADS  Google Scholar 

  14. J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  15. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, Opt. Express 14, 6055 (2006)

    Article  ADS  Google Scholar 

  16. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D.N. Christodoulides, A. Szameit, Sci. Rep. 1, 94 (2011)

    Article  ADS  Google Scholar 

  17. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008)

    Article  ADS  Google Scholar 

  18. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Opt. Express 17, 12546 (2009)

    Article  ADS  Google Scholar 

  19. S. Longhi, Phys. Rev. B 82, 041106(R) (2010)

    Google Scholar 

  20. S. Longhi, Opt. Lett. 33, 473 (2008)

    Article  ADS  Google Scholar 

  21. A. Szameit, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, E. Suran, F. Louradour, A. Barthélémy, S. Longhi, Appl. Phys. Lett. 93, 181109 (2008)

    Article  ADS  Google Scholar 

  22. R. Keil, Y. Lahini, Y. Shechtman, M. Heinrich, R. Pugatch, F. Dreisow, A. Tünnermann, S. Nolte, A. Szameit, Opt. Lett. 37, 809 (2012)

    Article  ADS  Google Scholar 

  23. Y. Joglekar, C. Thompson, G. Vemuri, Phys. Rev. A 83, 063017 (2011)

    ADS  Google Scholar 

  24. R. Gordon, Opt. Lett. 29, 2752 (2004)

    Article  ADS  Google Scholar 

  25. S. Bose, Contemp. Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  26. A. Kay, Int. J. Quantum Inf. 08, 641 (2010)

    Article  Google Scholar 

  27. J. Zhang, G. Lu Long, W. Zhang, Z. Deng, W. Liu, Z. Lu, Phys. Rev. A 72, 012331 (2005)

    Article  ADS  Google Scholar 

  28. J. Zhang, X. Peng, D. Suter, Phys. Rev. A 73, 062325 (2006)

    Article  ADS  Google Scholar 

  29. J. Zhang, N. Rajendran, X. Peng, D. Suter, Phys. Rev. A 76, 012317 (2007)

    Article  ADS  Google Scholar 

  30. J. Zhang, M. Ditty, D. Burgarth, C.A. Ryan, C.M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. A 80, 012316 (2009)

    Article  ADS  Google Scholar 

  31. M. Bellec, G.M. Nikolopoulos, S. Tzortzakis, Opt. Lett. 37, 4504 (2012)

    Article  Google Scholar 

  32. M. Christandl, N. Datta, A. Ekert, A. Landahl, Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  33. M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  34. G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, Europhys. Lett. 65, 297 (2004)

    Article  ADS  Google Scholar 

  35. G.M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, J. Phys.: Conds. Matter 16, 4991 (2004)

    Article  ADS  Google Scholar 

  36. A. Yariv, P. Yue, Photonics: Optical Electronics in Modern Communications (Oxford University Press, New York, 2006)

    Google Scholar 

  37. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)

    Article  ADS  Google Scholar 

  38. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  39. J.H. Eberly, B.W. Shore, Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. A 16, 2038 (1977)

    Article  ADS  Google Scholar 

  40. Z. Bialynicka-Birula, I. Bialynicki-Birula, J.H. Eberly, B.W. Shore, Phys. Rev. A 16, 2048 (1977)

    Article  ADS  Google Scholar 

  41. R. Cook, B.W. Shore, Phys. Rev. A 20, 539 (1979)

    Article  ADS  Google Scholar 

  42. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, H. Hosoya, Proc. SPIE 5339, 524 (2004)

    Article  ADS  Google Scholar 

  43. V. Kostak, G. Nikolopoulos, I. Jex, Phys. Rev. A 75, 042319 (2007)

    Article  ADS  Google Scholar 

  44. G.M. Nikolopoulos, A. Hoscovec, I. Jex, Phys. Rev. A 85, 062319 (2012)

    Article  ADS  Google Scholar 

  45. A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L.C. Kwek, B.M. Rodríguez-Lara, A. Szameit, D.N. Christodoulides, Phys. Rev. A 87, 012309 (2013)

    Article  ADS  Google Scholar 

  46. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame Phys. Rev. Lett. 105, 200503 (2010)

    Article  ADS  Google Scholar 

  47. A.S. Solntsev, A.A. Sukhorukov, D.N. Neshev, Y.S. Kivshar, Phys. Rev. Lett. 108, 023601 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Bellec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellec, M., Nikolopoulos, G.M., Tzortzakis, S. (2014). State Transfer Hamiltonians in Photonic Lattices. In: Nikolopoulos, G., Jex, I. (eds) Quantum State Transfer and Network Engineering. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39937-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39937-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39936-7

  • Online ISBN: 978-3-642-39937-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics