Skip to main content

Quantum State Transfer with Limited Resources

  • Chapter
  • First Online:
  • 1431 Accesses

Part of the book series: Quantum Science and Technology ((QST))

Abstract

In the quest for the achievement of realistic quantum state transfer protocols, relaxing the required conditions is a fundamental step. The use of multi-particle systems for the purpose of quantum information processing is made hard by a number of technical difficulties, related in particular to the lack of addressability of their single elements. We have thus to research novel ways to bypass these problems. Even if investigating the whole evolution of a quantum system is surely interesting, considering the behaviour of a few characteristic features could help us to find striking strategies in the context outlined above. This is exactly the idea at the basis of the method presented in this chapter, which we name information flux approach. Through it, we can design protocols for quantum state transfer in limited-control scenarios. In particular, we focus our interest in finding a way to avoid the initialisation of the spin chain. Different cases are described throughout the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, the XX model has been taken as \(\sum _{i=1}^{N-1}J_{i}(\hat{X}_{i}\hat{X}_{i+1} +\hat{ Y }_{i}\hat{Y }_{i+1})\). For this reason, when the parameters follow the pattern \(J_{i} = J\sqrt{i(N - i)}\), the time corresponding to perfect state transfer is \(t =\pi /(4J)\).

References

  1. C. Di Franco, M. Paternostro, G. M. Palma, M. S. Kim, Phys. Rev. A 76, 042316 (2007); C. Di Franco, M. Paternostro, G. M. Palma, Int. J. Quant. Inf. 6(Supp. 1), 659 (2008)

    Google Scholar 

  2. S. Bose, Contemp. Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  3. M. Christandl, N. Datta, A. Ekert, A. J. Landahl, Phys. Rev. Lett. 92, 187902 (2004); C. Albanese, M. Christandl, N. Datta, A. Ekert, Phys. Rev. Lett. 93, 230502 (2004); G. M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, Europhys. Lett. 65, 297 (2004); G. M. Nikolopoulos, D. Petrosyan, P. Lambropoulos, J. Phys.: Condens. Matter 16, 4991 (2004); M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, A. J. Landahl, Phys. Rev. A 71, 032312 (2005)

    Google Scholar 

  4. S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  5. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999); E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

    Google Scholar 

  6. C. Di Franco, M. Paternostro, D. I. Tsomokos, S. F. Huelga, Phys. Rev. A 77, 062337 (2008)

    Article  ADS  Google Scholar 

  7. Y. Makhlin, G. Schön, A. Schnirman, Rev. Mod. Phys. 73, 357 (2001); D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. H. Devoret, Science 296, 886 (2002); D. I. Tsomokos, M. J. Hartmann, S. F. Huelga, M. B. Plenio, New J. Phys. 9, 79 (2007)

    Google Scholar 

  8. C. Di Franco, M. Paternostro, M. S. Kim, Phys. Rev. A 81, 022319 (2010)

    Article  ADS  Google Scholar 

  9. A. O. Lyakhov, C. Bruder, Phys. Rev. B 74, 235303 (2006)

    Article  ADS  Google Scholar 

  10. A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 72, 034303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. D. P. DiVincenzo, in Mesoscopic Electron Transport, eds. by L. Kowenhoven, G. Schön, L. Sohn (Kluwer, Dordrecht, 1997).

    Google Scholar 

  12. N. Gershenfeld, I. L. Chuang, Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  14. G. De Chiara, D. Rossini, S. Montangero, R. Fazio, Phys. Rev. A 72, 012323 (2005); D. Burgarth, Eur. Phys. J. Special Topics 151, 147 (2007); M. Wiesniak, arXiv:0711.2357; L. Zhou, J. Lu, T. Shi, C. P. Sun, arXiv:quant-ph/0608135

    Google Scholar 

  15. J. Fitzsimons, J. Twamley, Phys. Rev. Lett. 97, 090502 (2006)

    Article  ADS  Google Scholar 

  16. C. Di Franco, M. Paternostro, M. S. Kim, Phys. Rev. Lett. 101, 230502 (2008); C. Di Franco, M. Paternostro, M. S. Kim, LNCS 6519, 168 (2011)

    Google Scholar 

  17. C. Di Franco, M. Paternostro, M. S. Kim, Phys. Rev. A 77, 020303(R) (2008)

    Google Scholar 

  18. D. M. Greenberger, M. A. Horne, A. Zeilinger, in Bell Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Kluwer, Dordrecht, 1989)

    Google Scholar 

  19. E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  20. S. Parker, M. B. Plenio, Phys. Rev. Lett. 85, 3049 (2000)

    Article  ADS  Google Scholar 

  21. R. Raussendorf, H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  22. M. Hein, J. Eisert, H.-J. Briegel, Phys. Rev. A 69, 062311 (2004); H.-J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Nat. Phys. 5, 19 (2009)

    Google Scholar 

  23. M.-H. Yung, S. Bose, Phys. Rev. A 71, 032310 (2005); P. Karbach, J. Stolze, Phys. Rev. A 72, 030301(R) (2005)

    Google Scholar 

  24. T. J. G. Apollaro, A. Cuccoli, C. Di Franco, M. Paternostro, F. Plastina, P. Verrucchi, New J. Phys. 8, 083046 (2010)

    Article  Google Scholar 

  25. M. Markiewicz, M. Wiesniak, Phys. Rev. A 79, 054304 (2009); see also A. Kay, Int. J. Quant. Inf. 8, 641 (2010)

    Google Scholar 

Download references

Acknowledgements

CDF and MP’s work was supported by the UK EPSRC with a grant under the “New Directions for EPSRC Research Leaders” initiative (EP/G004759/1). MSK’s work was supported by the grant NPRP 4-554-1-094 from Qatar National Research Fund. MP thanks the UK EPSRC for a Career Acceleration Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Di Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franco, C.D., Paternostro, M., Kim, M.S. (2014). Quantum State Transfer with Limited Resources. In: Nikolopoulos, G., Jex, I. (eds) Quantum State Transfer and Network Engineering. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39937-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39937-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39936-7

  • Online ISBN: 978-3-642-39937-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics