Skip to main content

Control of Gasoline Engines

  • Chapter
  • First Online:
Engine Modeling and Control
  • 5807 Accesses

Abstract

The control structure of gasoline engines follows by considering the main components, the main control tasks and a resulting control-oriented block diagram of direct injection (DI) gasoline engines (or spark-ignition (SI) engines) as described in the introduction chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfieri E, Amstutz A, Guzzella L (2009) Gain-scheduled model-based feedback control of the air/fuel ratio in diesel engines. Control Engineering Practice – CEP 17:1417–1425

    Google Scholar 

  • Alt B (2010) Modellbasierte Regelung ausgewählte Komponenten im Antreibsstrangeines Kraftfahrzeuges mit Ottomotor. Diss. Universität der BundeswehrMünchen. Fortschr.-Ber. VDI Reihe 8, 729. VDI Verlag, Düsseldorf

    Google Scholar 

  • Alt M, Quarg J, Bargende M (2002) Gasoline direct injection - potentials of homogeneous and stratified operation (in German). In: 11th Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, Germany

    Google Scholar 

  • Alt M, Grebe U, Dulzo J, Chang MF (2008) Closed loop combustion control for HCCI. In: 8. Int. Stuttgarter Symposium, Stuttgart

    Google Scholar 

  • Anastasia C, Pestana G (1987) A cylinder pressure sensor for closed-loop engine control. In: SAE Technical paper Series, Warrendale, PA, 870288

    Google Scholar 

  • Ault B, Jones V, Powell J, Franklin G (1994) Adaptive air-fuel ratio control of a spark ignition engine. In: SAE Technical paper Series, Warrendale, PA, 940373

    Google Scholar 

  • Babic G, Berner H, Bargende M (2010) Operating strategies on hcci combustion. In: 10. Internationales Stuttgarter Symposium, pp 543–561

    Google Scholar 

  • Bargende M (1995a) Most optimal location of 50 percent mass fraction burned and automatic knock detection components for automatic optimization of SI engine calibrations. MTZ worldwide 56(10)

    Google Scholar 

  • Bargende M (1995b) Schwerpunkt-Kriterium und automatische Klingelerkennung. Motortechnische Zeitschrift - MTZ 56(10):632–638

    Google Scholar 

  • van Basshuysen R, Schäfer F (2004) Internal combustion engine handbook: basics, components, systems, and perspectives. SAE International, Warrendale

    Google Scholar 

  • Baunach T, Schänzelin K, Diehl L (2006) Sauberes Abgas durch Keramiksensoren. Physik Journal 5(5):33–338

    Google Scholar 

  • BEG (2009) Bosch Engineering GmbH. Training notes Momentenstruktur. ME(D)17. Robert Bosch Engineering GmbH, Abstatt, Germany

    Google Scholar 

  • Bernard L, Ferrari A, Micelli D (2009) Electro-hydraulic valve control with MultiAirtechnology. ATZ autotechnology 9(6):32–37

    Google Scholar 

  • Borger M, Haussner M, Houben H, Marto A, Pechhold F (2004) Pressure sensor glow-plug for diesel engines. MTZ worldwide 65

    Google Scholar 

  • Brömmel A, Rombach M, Wickerath B, Weinecke T, Durand JM, Armenio G, Squarcini R, Gibat T (2010) Electrification powers pump innovations. MTZ extra pp 89–96

    Google Scholar 

  • Brüstle C, Schwarzenthal D (1998) The two-in-one engine - Porsche’s variable valve system (VVS). In: SAE Technical paper Series, Warrendale, PA, 980766

    Google Scholar 

  • Bücker C (2008) Betriebsstrategien zur kontrollierten Selbstzündung von Ottomotoren. Dissertation. RWTH Aachen, Aachen

    Google Scholar 

  • Chiang CJ, Stefanopoulou A, Jankovic M (2007) Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines. IEEE Trans on Control Systems Technology 15(3):438–448

    Google Scholar 

  • Cortona K (2003) Thermomanagement for fuel consumption reduction. Doctoral thesis. ETH Zürich, Zürich

    Google Scholar 

  • Denger D, Mischker K (2004) The electro-hydraulic valvetrain system. MTZ worldwide 65(12):10–13

    Google Scholar 

  • Dorey R, Stuart G (1994) Self-tuning control applied to the in-vehicle calibration of a spark ignition engine. In: Proc. of the 3rd Conf. on Control Applications, Glasgow, vol 1, pp 121–126

    Google Scholar 

  • Flierl R, Kairies D (2006) Comparison of fully variable mechanical and electromechanical valve trains. In: AUTOREG 2006, VDI, Wiesloch, Germany, vol VDI Berichte 1931, pp 345–358

    Google Scholar 

  • Gäfvert M, Ã…rzén KE, Pedersen L (2000) Simple linear feedback and extremum seeking control of GDI engines. In: Proceedings of Seoul 2000 FISITA World Automotive Congress, Seoul, Korea

    Google Scholar 

  • Genster A, Stephan W (2004) Always at the correct temperature – thermal management with electric coolant pump. MTZ worldwide 65(11):6–7

    Google Scholar 

  • Gerhardt J, Benninger N, Hess W (1997) Torque-oriented functional structure of an electronic engine management as a new basis of drivetrain systems (in German). In: 6th Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, Germany

    Google Scholar 

  • Gerhardt J, Höninger H, Bischof H (1998) A new approach to functional and software structure for engine management systems - Bosch ME97. In: SAE 980801, Aachen, Germany

    Google Scholar 

  • Glaser I, Powell JD (1981) Optimal closed-loop spark control of an automotive engine. Tech. rep

    Google Scholar 

  • Günther M (2004) Untersuchungen der Eigenschaften und Kontrollmöglichkeiten der homogene kompressionsgezündeten Verbrennung von Ottokraftstoff. Diss. Universität Karlsruhe. Karlsruhe

    Google Scholar 

  • Guzzella L, Onder C (2010) Introduction to modeling and control of internal combustion engine systems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Haas M, Rauch M (2010) Electro-hydraulic fully variable valve train system. MTZ worldwide 71

    Google Scholar 

  • Hellemans A, Landreve L, Venzel S, Walker E (2011) In-cylinder pressure sensor. MTZ worldwide 72(10):42–47

    Google Scholar 

  • Herden W, Küsell M (1994) A new combustion prressure sensor for advanced engine management. In: SAE Technical paper Series, Warrendale, PA, 940379

    Google Scholar 

  • Hess W (2003) Drehmomentorientierte Struktur der Motorsteuerungen. In: Isermann R (ed) Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren, Springer, Berlin

    Google Scholar 

  • Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Hockel K (1981) Einfluss der zeitlichen Energieumsetzung auf den Wirkungsgrad beim Ottomotor. Automobil-Industrie 3:315–320

    Google Scholar 

  • Hofmann D, Heinkle M, Heinrich D, Husch F, Zein T, Brandt M (2011) Scavening, a challenge for engine control (in German). In: AUTOREG 2011, VDI, Wiesloch, Germany, vol VDI Berichte 2135, pp 75–85

    Google Scholar 

  • Hohenberg G (1982) Der Verbrennungsverlauf. In: 4th Wiener Motorensymposium. Fortschr.-Ber. VDI Reihe 6, Nr. 103, VDI, Düsseldorf, pp 71–88

    Google Scholar 

  • Hohenberg G, Dolt R (1993) Ein Konzept zur adaptiven Steuerung/Regelung von Verbrennungsmotoren unter Verwendung eines Online-Brennverlaufsrechners. In: Fachtagung Integrierte mechanisch-elektronische Systeme, VDI, Düsseldorf, Darmstadt, Germany, vol Fortschr.-Ber. VDI Reihe 12 Nr. 179, pp 58–69

    Google Scholar 

  • Hrovat D, Sun J (1997) Models and control methodologies for IC engine idle speed control design. Control Engineering Practice – CEP 8(4):1093–1100

    Google Scholar 

  • Inoue T, Matsushita S, Nakanishi K, Okano H (1993) Toyota lean combustion system - the third generation system. In: SAE Technical paper Series, Warrendale, PA, 930873

    Google Scholar 

  • Isermann R (2015) Combustion-engine diagnosis. To be published. Springer, Berlin

    Google Scholar 

  • Isermann R, Müller N (2001) Nonlinear identification and adaptive control of combustion engines. In: IFAC Workshop on adaptation and learning in control and signal processing, Como, Italy

    Google Scholar 

  • Isermann R, Müller N (2003) Design of computer-controlled combustion engines. Mechatronics 13:1067–1089

    Google Scholar 

  • Isermann R, Münchhof M (2011) Identification of dynamic systems. Springer, Berlin

    Google Scholar 

  • Jost O (2000) Einsatz optischer Zylinderdrucksensoren zur Steuerung, Regelung und Ãœberwachung von Pkw-Dieselmotoren mit Direkteinspritzung. In: 20. Tagung. Elektronik im Kraftfahrzeug, Haus der Technik

    Google Scholar 

  • Kawamura A, Haneyoshi T, Hoft R (1988) Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor. IEEE Trans on Power Electronics 3(2):118–125

    Google Scholar 

  • Keller P, Wenzel W, Becker M, Roby J (2010) Hybrid coolant pumps with electrical and mechanical drive. ATZ autotechnology 10(6):52–56

    Google Scholar 

  • Kiencke U, Nielsen L (eds) (2000) Automotive control systems. For engine, driveline and vehicle. Springer, Berlin

    Google Scholar 

  • Kimmich F, Schwarte A, Isermann R (2001) Model-based fault detection for diesel engines. In: Aachen Colloquium, Automobile and Engine Technology, Aachen, Germany

    Google Scholar 

  • Klaus B, Drexler G, Eder T (2005) Further development of BMW’s fully-variable vavle control system Valvetronic. MTZ worldwide 66(9):10–13

    Google Scholar 

  • Klimstra J (1985) The optimum combustion phasing angle-a convenient engine tuning criterion. In: SAE Technical paper Series, Warrendale, PA, 852090

    Google Scholar 

  • Klüting M, Flierl R, Grudno A, Luttermann C (1999) Drosselfreie Laststeuerung mit vollvariablen Ventiltrieben. MTZ-Motortechnische Zeitschrift 60(7-8):476–485

    Google Scholar 

  • Köhler E, Flierl R (2012) Verbrennungsmotoren, 6th edn. Vieweg, Wiesbaden

    Google Scholar 

  • Kohlhase M (2011) Brennraumdruckbasiertes Motormanagement für Otto- und Dieselmotoren zur Verbrauchs- und Emissionsreduktion. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 743, VDI Verlag, Düsseldorf

    Google Scholar 

  • Kohlhase M, Isermann R (2009) Self-tuning extremum value control based on cylincer pressure sensors for direct injection spark ignition engines (in German). at - Automatisierungstechnik 57(1):23–31

    Google Scholar 

  • Konrad H, Krämer G (2002) The development of the control functions for the bmw valvetronic engines (in german). at - Automatisierungstechnik pp 360–367

    Google Scholar 

  • Krebber-Hortmann K, Köster A, Tönnesmann A, Brunetti C (2013) Possibilities for fuel consumption through electrical camshaft actuation. MTZ – Motortechnische Zeitschrift 73(7-8):854–859

    Google Scholar 

  • Kulzer A, Fischer W, Karrelmeyer R, Saver C, Wintrich T, Benninger K (2009) Homogeneous charge compression ignition on gasoline engines. MTZ worldwide 70(1):32–57

    Google Scholar 

  • Lamparski C (2007) Bedarfsgerechte Ölversorgnung: Regelpumpen im Serieneinsatz. In: BergM(ed) Ölkreislauf von Verbrennungsmotoren II, expert verlag, Renningen, pp 83–108

    Google Scholar 

  • Landenfeld T, Gerhardt J, Küsell M (2002) Gasoline direct injection - an attractive concept for emission reduction (in German). In: 11th Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, Germany, pp 177–197

    Google Scholar 

  • Liebl J, Klüting M, Poggel J, Missy S (2001a) Der neue BMW Vierzylinder- Ottomotor mit Valvetronic. Motortechnische Zeitschrift – MTZ 62(7-8):570–579

    Google Scholar 

  • Liebl J, Munk F, Hohenner H, Ludwig B (2001b) Die Steuerung der neuen BMW VALVETRONIC Motoren. Motortechnische Zeitschrift – MTZ 62(7-8):516–527

    Google Scholar 

  • Loh R, Lu M (2001) Crank-angle domain modeling and optimal tracking control for automotive engine idle speed. In: IFAC Conferenc on New Technologies for Computer Control, Hong Kong, pp 247–258

    Google Scholar 

  • Martin G (2009) Variable Ventiltriebe für Verbrennungsmotoren. ATZ extra (11):204–218

    Google Scholar 

  • Matekunas F (1986) Engine combustion control with ignition timing by pressure ratio management. Patent US 4,622,939

    Google Scholar 

  • Meisberger D, Albert C, Bourdon K (1998) Die neue Motorsteuerung ME7.2 von Bosch für den BMW V8-Motor. Motortechnische Zeitschrift – MTZ 59(12):826– 834

    Google Scholar 

  • Merker G, Schwarz C, Stiesch G, Otto F (2006) Simulating combustion. Springer, Berlin

    Google Scholar 

  • Moriwaki J, Murai H, Kameshima A (2003) Glow plug with comubstion pressure sensor. In: SAE 2003 World Congress and Exhibition, Detroit, MI, 2003-01-0707

    Google Scholar 

  • Müller N (2003) Adaptive engine control for gasoline engines using combustion pressure sensors (in German). Fortschr.-Ber. VDI Reihe 12, 545. VDI Verlag, Düsseldorf

    Google Scholar 

  • Pestana G (1989) Engine control methods using combustion pressure feedback. In: SAE Technical paper Series, Warrendale, PA, 890758

    Google Scholar 

  • Powell D (1993) Engine control using cylinder pressure: past, present, and future. Journal of Dynamic Systems, Measurement and Control 115:343–350

    Google Scholar 

  • Powell J, Fekete N, Chang C (1998) Observer-based air-fuel ratio control. IEEE Control Systems Magazine 18:72–83

    Google Scholar 

  • Rausen D, Stefanopoulou A, Kang JM, Eng J, Kuo TW (2005) A mean-value model for control of homogeneous charge compression ignition (HCCI) engines. J of Dyn Meas and Control 127:355–362

    Google Scholar 

  • Ravi N, Roelle M, Chang C, Gerdes J (2009) Physical modeling and control of a multi-cylinder HCCI engine. In: Proceedings of the ASME 2009 Dynamic Systems and Control Conference, DSCC2009, Hollywood, California, USA

    Google Scholar 

  • Ravi N, Liao HH, Jungkunz A, Widd A, Gerdes J (2012) Model predictive control of HCCI using variable valve actuation and fuel injection. Control Engineering Practice 20(4):421–430

    Google Scholar 

  • Robert Bosch GmbH (2004) Ottomotor-Management. Vieweg, Wiesbaden

    Google Scholar 

  • Robert Bosch GmbH (ed) (2007) Automotive electrics, automotive electronics. J. Wiley, Chichester, UK

    Google Scholar 

  • Robert Bosch GmbH (ed) (2011) Automotive Handbook, 8th edn. Bentley publishers, Cambridge

    Google Scholar 

  • Rohe-Brandenburger K (1986) Einfluss des Zündwinkels auf den Wirkungsgradeines Mehrzylinder-Ottomotors im instationären Betrieb. Fortschr.-Ber. VDI Reihe 12, 79, VDI Verlag, Düsseldorf

    Google Scholar 

  • Rupp D, Onder C, Guzzella L (2008) Iterative adaptive air/fuel ratio control. In: Proceedings IFAC Symposium in Advances in Automotive Control, Seascape Resort Aptos, CA, USA, pp 609–615

    Google Scholar 

  • Salber W, Kemper H, Staay F, Esch T (2000) The electro-mechanical valve train–a system module for future powertrain concepts. MTZ worldwide 61(12):826–826

    Google Scholar 

  • Sauter W, Hensel S, Spicher U, Schubert A, Schiessl R (2008) Controlled autoignition-reduction of engine emissions in gasoline engines. MTZ worldwide 69(1):40–47

    Google Scholar 

  • Schneider F, Lettmann M (2008) Variable valve timing for any engine concept. MTZ worldwide 69(5):27–28

    Google Scholar 

  • Schramm H, Wurst B (1977) Vorrichtung zur Extremwert-Regelung bei Kraftmaschinen. Patent DE 2739568C2. Robert Bosch GmbH

    Google Scholar 

  • Schulz T, Kulzer A (2006) Ãœberblick und Bewertung variabler Ventiltriebe. In: AUTOREG 2006, VDI, Wiesloch, Germany, vol VDI-Berichte 1931, pp 339–344

    Google Scholar 

  • Scotson P, Wellstead R (1990) Self-tuning optimization of spark ignition automotive engines. In: IEEE Control Magazine, vol 10, pp 94–101

    Google Scholar 

  • Sellnau M, Matekunas F, Battiston P, Chang CF, Lancaster D (2000) Cylinder pressure- based engine control using pressure-ratio-management and low-cost nonintrusive cylinder pressure sensors. In: SAE Technical paper series, Warrendale, PA, 2000-01-0932

    Google Scholar 

  • Shaver G, Gerdes J, Roelle M (2004) Physics-based closed-loop control of phasing, peak pressure and work output in HCCI engines utilizing variable valve actuation. In: American Control Conference, vol 1, pp 150–155

    Google Scholar 

  • Spicher U (ed) (2007) Direkteinspritzung im Ottomotor III. expert Verlag, Renningen

    Google Scholar 

  • Stiesch G (2003) Modeling Engine Spray and Combustion Processes. Springer, Berlin

    Google Scholar 

  • Straky H (1996) Modellgestützter Funktionsentwurf für Kfz-Stellglieder; Regelung der elektromechanischen Ventiltriebaktorik und Fehlerdiagnose der Bremssystemhydraulik. Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 12, 546. VDI Verlag, Düsseldorf

    Google Scholar 

  • Stuhler H, Kruse T (2003) Parametrierung der Motorsteuerungen. In: Isermann R (ed) Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren, Springer, Berlin, chap 3

    Google Scholar 

  • Teetz C, Bergmann D, Schneemann A, Eichmeier J (2012) MTU HCCI engine with low raw emissions. MTZ worldwide 73(9):4–9

    Google Scholar 

  • Truscott A, Noble A, Akoachere A, Müller R, Hart M, Krötz G, Richter C, Cavalloni C, Gnielka M (2001) In-cylinder pressure sensing and model-based control of a spark ignition engine. In: Proceedings. JSAE Annual Congress, 36-01, pp 5–8

    Google Scholar 

  • Tschöke H, Schultalbers M, Gottschalk W, Huthöfer E, Jordan A (2011) Thermodynamic optimizatioon criteria for the ignition time of modern SI engines. MTZ worldwide 72(1):52–57

    Google Scholar 

  • Unger H, Schwarz C, Schneider J, Koch F (2008) The valvetronic experience from seven years of mass production. MTZ worldwide 69(7-8):30–37

    Google Scholar 

  • Vogt M, Müller N, Isermann R (2004) Online adaptation of grid-based look-up tables using a fast regressor technique. Transactions of the ASME 126(Dec):732–739

    Google Scholar 

  • Voigt D (2003) Kraftstoffverbrauchsvorteile durch Regelölpumpen. Motortechnische Zeitschrift - MTZ 64(12)

    Google Scholar 

  • Voigt D (2010) Motorschmierung bei PKW-Motoren. In: Eberan-Eberhorst C (ed) Schmierung von Verbrennungsmotoren, expert verlag, Renningen, pp 140–151

    Google Scholar 

  • Wellstead R, Scotson P (1990) Self-tuning extremum control. In: IEE-Proceedings Control Theory and Applications, vol 137, pp 165–175

    Google Scholar 

  • Willand J, Jelitto C, Jakobs J (2008) The GCI combustion process from Volkswagen. MTZ worldwide 69(4):56–61

    Google Scholar 

  • Willand J, Schintzel K, Hoffmeyer H (2009) The potential of turbo-charged gasoline engines with spray guided direct injection. MTZ worldwide 70(2):12–18

    Google Scholar 

  • Willimowski M (2003) Verbrennungsdiagnose von Ottomotoren mittels Abgasdruck und Ionenstrom. Dissertation Technische Universität Darmstadt. Shaker Verlag, Aachen

    Google Scholar 

  • Wöckel N, Leimbröck M (2007) Optimierter Ölkreislauf der neuen Porsche V8- Motoren mit variabler Ölpumpe. In: Berg M (ed) Ölkreislauf von Verbrennungsmotoren II, expert verlag, Renningen, pp 2–22

    Google Scholar 

  • Won M, Choi S, Hedrick J (1998) Air-to-fuel ratio control of si engines using gaussian network sliding control. IEEE Control System Technology 6(5):678–687

    Google Scholar 

  • Yildiz Y, Annaswamy A, Yanakiev D, Kolmanovsky I (2010) Spark ignition engine fuel-to-air control: an adaptive control approach. Control Engineering Practice – CEP 18:1369–1378

    Google Scholar 

  • Zarske R (1988) Dynamisches Steuerkonzept für Einspritzung und Zündung von Ottomotoren. Braunschweig

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Isermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isermann, R. (2014). Control of Gasoline Engines. In: Engine Modeling and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39934-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39934-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39933-6

  • Online ISBN: 978-3-642-39934-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics