Skip to main content

Efficient Predictive Fault-Tolerant Control for Non-linear Systems

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 230))

Abstract

The paper deals with the problem of robust predictive fault-tolerant control for non-linear discrete-time systems. The proposed approach is based on a triple stage procedure, i.e. its starts from fault estimation, the fault is compensated with a robust controller. Finally, if the fault compensation does not provide satisfactory, which means that the current state does not belong to the robust invariant set, then a suitable predictive control actions are performed in order to enhance the invariant set. This appealing phenomenon makes it possible to enlarge the domain of attraction, which makes the proposed approach an efficient solution. The final part of the paper shows how to extend the proposed approach to the non-linear systems that can be described with the Takagi-Sugeno models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  2. Chen, W., Khan, A.Q., Abid, M., Ding, S.X.: Integrated design of observer-based fault detection for a class of uncertain non-linear systems. International Journal of Applied Mathematics and Computer Science 21(4), 619–636 (2011)

    MathSciNet  Google Scholar 

  3. De Oca, S., Puig, V., Witczak, M., Dziekan, L.: Fault-tolerant control strategy for actuator faults using lpv techniques: application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161–171 (2012)

    MathSciNet  Google Scholar 

  4. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Systems and Control Letters 37(4), 261–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dziekan, L., Witczak, M., Korbicz, J.: Active fault-tolerant control design for takagi-sugeno fuzzy systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 59(1), 93–102 (2011)

    Article  Google Scholar 

  6. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111–116 (2007)

    Article  MATH  Google Scholar 

  7. Imsland, L., Bar, N., Foss, B.A.: More efficient predictive control. Automatica 41(8), 1395–1403 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Isermann, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Berlin (2011)

    Google Scholar 

  9. Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  10. Kouvaritakis, B., Lee, Y.I., Cannon, M.: Extended invariance and its use in model predictive control. Automatica 41 (2005)

    Google Scholar 

  11. Luzar, M., Czajkowski, A., Witczak, M., Mrugalski, M.: Actuators and sensors fault diagnosis with dynamic, state-space neural networks. In: MMAR 2012: Proceedings of the 17th IEEE International Conference on Methods and Models in Automation and Robotics, pp. 196–201 (2012)

    Google Scholar 

  12. Kouvaritakis, B., Rossiter, J.A.: Schuurmans J. Efficient robust predictive control. IEEE Transactions on Automatic Control 45(8), 1545–1549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, H., Fu, M.: A linear matrix inequality approach to robust h  ∞  filtering. IEEE Trans. Signal Processing 45(9), 2338–2350 (1997)

    Article  Google Scholar 

  14. Li, H., Zhao, Q., Yang, Z.: Reliability modeling of fault tolerant control systems. International Journal of Applied Mathematics and Computer Science 17(4), 491–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Mrugalski, M.: An unscented kalman filter in designing dynamic gmdh neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science 23(1), 157–169 (2013)

    Article  Google Scholar 

  17. Noura, H., Theilliol, D., Ponsart, J., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, Berlin (2003)

    Google Scholar 

  18. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  19. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley Interscience, New York (2001)

    Book  Google Scholar 

  20. Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Witczak, M., Puig, V.: Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms. International Journal of Control 86 (in print, 2013)

    Google Scholar 

  22. Zemouche, A., Boutayeb, M., Iulia Bara, G.: Observer for a class of Lipschitz systems with extension to H  ∞  performance analysis. Systems and Control Letters 57(1), 18–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. In: IFAC Symposium Fault Detection Supervision and Safety of Technical Processes, Safeprocess, Washington, D.C., USA, pp. 265–276 (2003)

    Google Scholar 

  24. Zongli, L., Liang, L.: Set invariance conditions for singular linear systems subject to actuator saturation. IEEE Transactions on Automatic Control 52(12), 2351–2355 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Witczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Witczak, M., Witczak, P. (2014). Efficient Predictive Fault-Tolerant Control for Non-linear Systems. In: Korbicz, J., Kowal, M. (eds) Intelligent Systems in Technical and Medical Diagnostics. Advances in Intelligent Systems and Computing, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39881-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39881-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39880-3

  • Online ISBN: 978-3-642-39881-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics