Skip to main content

Speeding-Up the Learning of Saccade Control

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

A saccade is a ballistic eye movement that allows the visual system to bring the target in the center of the visual field. For artificial vision systems, as in humanoid robotics, performing such a movement requires to know the intrinsic parameters of the camera. Parameters can be encoded in a bio-inspired fashion by a non-parametric model, that is trained during the movement of the camera. In this work, we propose a novel algorithm to speed-up the learning of saccade control in a goal-directed manner. During training, the algorithm computes the covariance matrix of the transformation and uses it to choose the most informative visual feature to gaze next. Results on a simulated model and on a real setup show that the proposed technique allows for a very efficient learning of goal-oriented saccade control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, M., Grzyb, B., Castelló, V., del Pobil, A.: Augmenting the reachable space in the nao humanoid robot. In: Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  2. Antonelli, M., Chinellato, E., Del Pobil, A.P.: On-line learning of the visuomotor transformations on a humanoid robot. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 193, pp. 853–861. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Castet, E., Masson, G.S.: Motion perception during saccadic eye movements. Nature Neuroscience 3(2), 177–183 (2000)

    Article  Google Scholar 

  4. Chao, F., Lee, M., Lee, J.: A developmental algorithm for ocular-motor coordination. Robotics and Autonomous Systems 58(3), 239–248 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen-Harris, H., Joiner, W., Ethier, V., Zee, D., Shadmehr, R.: Adaptive control of saccades via internal feedback. The Journal of Neuroscience 28(11), 2804 (2008)

    Article  Google Scholar 

  6. Chinellato, E., Antonelli, M., Grzyb, B., del Pobil, A.: Implicit sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE Transactions on Autonomous Mental Development 3, 45–53 (2011)

    Article  Google Scholar 

  7. Chinellato, E., Antontelli, M., del Pobil, A.P.: A pilot study on saccadic adaptation experiments with robots. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 83–94. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Chinellato, E., Grzyb, B.J., Marzocchi, N., Bosco, A., Fattori, P., del Pobil, A.P.: The dorso-medial visual stream: From neural activation to sensorimotor interaction. Neurocomputing 74(8), 1203–1212 (2011)

    Article  Google Scholar 

  9. Collins, T., Doré-Mazars, K., Lappe, M.: Motor space structures perceptual space: Evidence from human saccadic adaptation. Brain Research 1172, 32–39 (2007)

    Article  Google Scholar 

  10. Deubel, H.: Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Research 35(23-24), 3529–3540 (1995)

    Article  Google Scholar 

  11. Fiser, J., Berkes, P., Orbán, G., Lengyel, M.: Statistically optimal perception and learning: from behavior to neural representations: Perceptual learning, motor learning, and automaticity. Trends in Cognitive Sciences 14(3), 119 (2010)

    Article  Google Scholar 

  12. Forssén, P.: Learning saccadic gaze control via motion prediciton. In: Fourth Canadian Conference on Computer and Robot Vision (CRV), pp. 44–54 (2007)

    Google Scholar 

  13. Haykin, S.S., et al.: Kalman filtering and neural networks. Wiley Online Library (2001)

    Google Scholar 

  14. Hoffmann, H., Schenck, W., Möller, R.: Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics 93(2), 119–130 (2005)

    Article  MATH  Google Scholar 

  15. Jordan, M., Rumelhart, D.: Forward models: Supervised learning with a distal teacher. Cognitive Science: A Multidisciplinary Journal 16(3), 307–354 (1992)

    Article  Google Scholar 

  16. Kawato, M.: Feedback-error-learning neural network for supervised motor learning. Advanced Neural Computers 6(3), 365–372 (1990)

    Google Scholar 

  17. Marjanovic, M., Scassellati, B., Williamson, M.: Self-taught visually guided pointing for a humanoid robot. In: From Animals to Animats 4: Proc. Fourth Intl. Conf. Simulation of Adaptive Behavior, pp. 35–44 (1996)

    Google Scholar 

  18. McLaughlin, S.: Parametric adjustment in saccadic eye movements. Attention, Perception, & Psychophysics 2(8), 359–362 (1967)

    Article  Google Scholar 

  19. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991)

    Article  Google Scholar 

  20. Pouget, A., Sejnowski, T.J.: Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience 9(2), 222–237 (1997)

    Article  Google Scholar 

  21. Pouget, A., Snyder, L.: Computational approaches to sensorimotor transformations. Nature Neuroscience 3, 1192–1198 (2000)

    Article  Google Scholar 

  22. Quigley, M., et al.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  23. Schenck, W., Möller, R.: Learning strategies for saccade control. Künstliche Intelligenz (3/06), 19–22 (2006)

    Google Scholar 

  24. Schnier, F., Zimmermann, E., Lappe, M.: Adaptation and mislocalization fields for saccadic outward adaptation in humans. Journal of Eye Movement Research 3(3), 1–18 (2010)

    Google Scholar 

  25. Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic oculomotor control. Adapt. Behav. 9(3-4), 189–207 (2001)

    Article  Google Scholar 

  26. Sun, G., Scassellati, B.: A fast and efficient model for learning to reach. International Journal of Humanoid Robotics 2(4), 391–414 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelli, M., Duran, A.J., Chinellato, E., Del Pobil, A.P. (2013). Speeding-Up the Learning of Saccade Control. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics