Skip to main content

Miniaturized Electrophysiology Platform for Fly-Robot Interface to Study Multisensory Integration

  • Conference paper
Book cover Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

To study multisensory integration, we have designed a fly-robot interface that will allow a blowfly to control the movements of a mobile robotic platform. Here we present successfully miniaturized recording equipment which meets the required specifications in terms of size, gain, bandwidth and stability. Open-loop experiments show that despite its small size, stable recordings from the identified motion-sensitive H1-cell are feasible when: (i) the fly is kept stationary and stimulated by external motion of a visual pattern; (ii) the fly and platform are rotating in a stationary visual environment. Comparing the two data sets suggests that rotating the fly or the pattern, although resulting in the same visual motion stimulus, induce slightly different H1-cell response. This may reflect the involvement of mechanosensory systems during rotations of the fly. The next step will be to use H1-cell responses for the control of unrestrained movements of the robot under closed-loop conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bomphrey, R.J., Walker, S.M., Taylor, G.K.: The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena. PLoS ONE 4(11), e7852 (2009)

    Google Scholar 

  2. Taylor, G.K., Krapp, H.G.: Sensory systems and flight stability: What do insects measure and why? Adv. Ins. Phys. 34, 231–316 (2007)

    Article  Google Scholar 

  3. Krapp, H.G.: Ocelli. Current Biology 19(11), R435–R437 (2009)

    Google Scholar 

  4. Dickinson, M.H.: Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354(1385), 903–916 (1999)

    Article  Google Scholar 

  5. Matsuo, E., Kamikouchi, A.: Neuronal encoding of sound, gravity, and wind in the fruit fly. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 199(4), 253–262 (2013)

    Article  Google Scholar 

  6. Strausfeld, N.J.: Atlas of an Insect Brain. Springer, New York (1976)

    Book  Google Scholar 

  7. Krapp, H.G., Wicklein, M.: Central processing of visual information in insects. In: Masland, R., Albright, T.D. (eds.) The Senses: a Comprehensive Reference, vol. 1, pp. 131–204. Academic Press (2008)

    Google Scholar 

  8. Strausfeld, N.J., Seyan, H.S.: Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala. Cell and Tissue Research. 240, 601–615 (1985)

    Article  Google Scholar 

  9. Parsons, M.M., Krapp, H.G., Laughlin, S.B.: A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. Journal of Experimental Biology 209, 4464–4474 (2006)

    Article  Google Scholar 

  10. Huston, S.J., Krapp, H.G.: Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 22 6(7), e173 (2008)

    Google Scholar 

  11. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch 31, 629–633 (1976)

    Google Scholar 

  12. Krapp, H.G.: Neuronal matched filters for optic flow processing in flying insects. Int. Rev. Neurob. 44, 93–120 (2000)

    Article  Google Scholar 

  13. Maddess, T., Laughlin, S.B.: Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc. R. Soc. Lond. B 225, 251–275 (1985)

    Article  Google Scholar 

  14. Borst, A., Haag, J.: Neural networks in the cockpit of the fly. J. Comp. Phys. A 188, 419–437 (2002)

    Article  Google Scholar 

  15. Longden, K.D., Krapp, H.G.: Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4, 153 (2010)

    Article  Google Scholar 

  16. Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.: Neural coding of naturalistic motion stimuli. Network 12, 317–329 (2001)

    Google Scholar 

  17. Nemenman, I., Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R.: Neural Coding of Natural Stimuli: Information at Sub-Millisecond Resolution. PLoS. Comput. Biol. 4(3), e1000025 (2008)

    Google Scholar 

  18. Huston, S.J., Krapp, H.G.: Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons. J. Neurosci. 29(42), 13097–13105 (2009)

    Article  Google Scholar 

  19. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder, A.W., Menzel, R. (eds.) Photoreceptor Optics, pp. 98–125. Springer (1975)

    Google Scholar 

  20. Karmeier, K., Tabor, R., Egelhaff, M., Krapp, G.H.: Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Vis. Neurosci. 18, 1–8 (2001)

    Article  Google Scholar 

  21. Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85(2), 724–734 (2001)

    Google Scholar 

  22. Ejaz, N., Peterson, K., Krapp, H.: An experimental platform to study the closed-loop performance of brain-machine interfaces. J. Vis. Exp. 10(3791) (2011)

    Google Scholar 

  23. Longden, K.D., Krapp, H.G.: State-dependent performance of optic-flow processing interneurons. J. Neurophysiol. 102(6), 3606–3618 (2009)

    Article  Google Scholar 

  24. Haag, J., Borst, A.: Electrical coupling of lobula plate tangential cells to a heterolateral motion-sensitive neuron in the fly. J. Neurosci. 28(53), 14435–14442 (2008)

    Article  Google Scholar 

  25. Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., Egelhaaf, M.: Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol. 3(6), e171 (2005)

    Google Scholar 

  26. Weber, F., Machens, C.K., Borst, A.: Disentangling the functional consequences of the connectivity between optic-flow processing neurons. Nat. Neurosci. 15(3), 441–448, S1–S2 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, J.V., Krapp, H.G. (2013). Miniaturized Electrophysiology Platform for Fly-Robot Interface to Study Multisensory Integration. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics